AT_abc439_d [ABC439D] Kadomatsu Subsequence
Description
You are given an integer sequence $ A=(A_1,A_2,\dots,A_N) $ of length $ N $ .
Find the number of triples of integers $ (i,j,k) $ that satisfy all of the following:
- $ 1 \le i,j,k \le N $
- $ A_i : A_j : A_k = 7:5:3 $
- $ \min(i,j,k) = j $ or $ \max(i,j,k) = j $ .
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ A_1 $ $ A_2 $ $ \dots $ $ A_N $
Output Format
Output the answer.
Explanation/Hint
### Sample Explanation 1
The seven triples of integers $ (i,j,k) $ that satisfy the conditions are:
- $ (3,9,1) $
- $ A_i : A_j : A_k = 7:5:3 $ , and $ \max(i,j,k) = j $ .
- $ (5,9,1) $
- $ A_i : A_j : A_k = 7:5:3 $ , and $ \max(i,j,k) = j $ .
- $ (7,9,1) $
- $ A_i : A_j : A_k = 7:5:3 $ , and $ \max(i,j,k) = j $ .
- $ (10,2,6) $
- $ A_i : A_j : A_k = 14:10:6 = 7:5:3 $ , and $ \min(i,j,k) = j $ .
- $ (10,2,8) $
- $ A_i : A_j : A_k = 14:10:6 = 7:5:3 $ , and $ \min(i,j,k) = j $ .
- $ (10,4,6) $
- $ A_i : A_j : A_k = 14:10:6 = 7:5:3 $ , and $ \min(i,j,k) = j $ .
- $ (10,4,8) $
- $ A_i : A_j : A_k = 14:10:6 = 7:5:3 $ , and $ \min(i,j,k) = j $ .
### Constraints
- All input values are integers.
- $ 1 \le N \le 3 \times 10^5 $
- $ 1 \le A_i \le 10^9 $