AT_abc440_d [ABC440D] Forbidden List 2
Description
There is a list consisting of $ N $ distinct integers. The $ i $ -th ( $ 1 \leq i \leq N $ ) integer in the list is $ A_i $ .
You are given $ Q $ questions; answer each of them. The $ j $ -th question ( $ 1 \leq j \leq Q $ ) is as follows:
- Find the $ Y_j $ -th smallest value among the integers greater than or equal to $ X_j $ that are not in the list.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ Q $ $ A_1 $ $ \cdots $ $ A_N $ $ X_1 $ $ Y_1 $ $ \vdots $ $ X_Q $ $ Y_Q $
Output Format
Output $ Q $ lines. The $ j $ -th line ( $ 1 \leq j \leq Q $ ) should contain the answer to the $ j $ -th question.
Explanation/Hint
### Sample Explanation 1
For the first question, the smallest $ 10 $ integers greater than or equal to $ 6 $ that are not in the list are $ 6,\ 7,\ 8,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 17 $ . Thus, the answer to the question is $ 17 $ .
For the second question, the smallest $ 4 $ integers greater than or equal to $ 12 $ that are not in the list are $ 12,\ 13,\ 14,\ 15 $ . Thus, the answer to the question is $ 15 $ .
For the third question, the $ 1 $ st smallest value among the integers greater than or equal to $ 1 $ that are not in the list is $ 4 $ .
For the fourth question, the $ 1\,000\,000\,000 $ -th smallest value among the integers greater than or equal to $ 1\,000\,000\,000 $ that are not in the list is $ 1\,999\,999\,999 $ .
### Constraints
- $ 1 \leq N \leq 3 \times 10^5 $
- $ 1 \leq Q \leq 3 \times 10^5 $
- $ 1 \leq A_i \leq 10^9 $ ( $ 1 \leq i \leq N $ )
- $ A_1, \dots, A_N $ are distinct.
- $ 1 \leq X_j \leq 10^9 $ ( $ 1 \leq j \leq Q $ )
- $ 1 \leq Y_j \leq 10^9 $ ( $ 1 \leq j \leq Q $ )
- All input values are integers.