AT_abc443_f [ABC443F] Non-Increasing Number
Description
A positive integer $ X $ is called a **good integer** if and only if it satisfies the following condition:
- When $ X $ is written in decimal notation, the ones digit, tens digit, $ \ldots $ form a non-increasing sequence.
- More formally, the unique non-negative integer sequence $ (d_0,d_1,\ldots) $ satisfying $ \displaystyle X=\sum_{i=0}^{\infty} d_i10^i $ $ (0\le d_i < 10) $ forms a non-increasing sequence.
For example, $ 112389 $ , $ 1 $ , and $ 777 $ are good integers, but $ 443 $ and $ 404 $ are not good integers.
You are given a positive integer $ N $ .
Determine whether there exists a good integer that is a multiple of $ N $ , and if it exists, find its minimum value.
Input Format
The input is given from Standard Input in the following format:
> $ N $
Output Format
If there does not exist a good integer that is a multiple of $ N $ , output $ -1 $ .
If it exists, output the minimum value of a good integer that is a multiple of $ N $ .
Explanation/Hint
### Sample Explanation 1
$ 126 $ is a multiple of $ 21 $ , and we have $ 6 \geq 2 \geq 1 \geq 0 \geq \ldots $ , so it is a good integer. There does not exist a good integer less than $ 126 $ that is a multiple of $ 21 $ , so output $ 126 $ .
### Sample Explanation 4
The answer may be $ 2^{64} $ or greater.
### Constraints
- $ 1\le N\le 3\times 10^6 $
- All input values are integers.