AT_agc074_b [AGC074B] Swap if Equal Length and Sum

Description

You are given integer sequences $ A=(A_1,A_2,\dots,A_N),\; B=(B_1,B_2,\dots,B_N) $ of length $ N $ consisting of $ 0 $ and $ 1 $ . Let $ A[i,j] $ denote the contiguous subsequence from the $ i $ -th through $ j $ -th elements of sequence $ A $ . If $ i>j $ , $ A[i,j] $ is a sequence of length $ 0 $ . You can perform the following operation on $ A $ at most $ \lfloor\frac{N}{2}\rfloor $ times: - Choose four integers $ a,b,c,d $ that satisfy the following three conditions: - $ 1 \leq a \leq b < c \leq d \leq N $ - $ b-a=d-c $ - $ \sum_{i=a}^{b}{A_i}=\sum_{i=c}^{d}{A_i} $ - Swap $ A[a,b] $ and $ A[c,d] $ . More precisely, replace $ A $ with the concatenation of $ A[1,a-1] $ , $ A[c,d] $ , $ A[b+1,c-1] $ , $ A[a,b] $ , $ A[d+1,N] $ in this order. Determine whether it is possible to make $ A $ match $ B $ , and if possible, construct one sequence of operations. Solve $ T $ test cases per input.

Input Format

The input is given from Standard Input in the following format: > $ T $ $ case_1 $ $ case_2 $ $ \vdots $ $ case_T $ Each case is given in the following format: > $ N $ $ A_1 $ $ A_2 $ $ \dots $ $ A_N $ $ B_1 $ $ B_2 $ $ \dots $ $ B_N $

Output Format

Output the answer in the following format: > $ output_1 $ $ output_2 $ $ \vdots $ $ output_T $ Here, $ output_t $ represents the output for the $ t $ -th test case. For each case, if you can make $ A $ match $ B $ , let $ K $ be the number of operations required and $ (a_k,b_k,c_k,d_k) $ be the values chosen in the $ k $ -th operation, then output in the following format: > Yes $ K $ $ a_1 $ $ b_1 $ $ c_1 $ $ d_1 $ $ a_2 $ $ b_2 $ $ c_2 $ $ d_2 $ $ \vdots $ $ a_K $ $ b_K $ $ c_K $ $ d_K $ If it is impossible to make $ A $ match $ B $ , output `No`.

Explanation/Hint

### Sample Explanation 1 In the first test case, $ A $ is initially $ (1,0,0,1,0,1,0,1) $ . Performing the operation with $ (a,b,c,d)=(3,4,6,7) $ changes $ A $ to $ (1,0,1,0,0,0,1,1) $ . Then, performing the operation with $ (a,b,c,d)=(1,4,5,8) $ changes $ A $ to $ (0,0,1,1,1,0,1,0) $ , which matches $ B $ . In the second test case, it is impossible to make $ A $ match $ B $ . In the third test case, $ A $ already matches $ B $ from the beginning. ### Constraints - $ 1 \leq T \leq 25000 $ - $ 2 \leq N \leq 2 \times 10^5 $ - $ 0 \leq A_i \leq 1 $ - $ 0 \leq B_i \leq 1 $ - The sum of $ N $ over all test cases is at most $ 2\times 10^5 $ . - All input values are integers.