AT_agc074_c [AGC074C] PORALIS

Description

You are given a positive integer $ N $ . Output one pair of non-negative integer sequences $ P=(P_1, P_2, \dots,P_N), A=(A_1, A_2, \dots,A_N) $ that satisfies all of the following conditions: - $ 0 \leq P_i < 2^{30}~(1 \leq i \leq N) $ - $ 0 \leq A_i < 2^{30}~(1 \leq i \leq N) $ - The length of a longest strictly increasing subsequence of $ (P_1~\mathrm{OR}~A_i, P_2~\mathrm{OR}~A_i, \dots, P_N~\mathrm{OR}~A_i) $ is $ i $ . $ (1 \leq i \leq N) $ - $ \mathrm{OR} $ denotes the bitwise $ \mathrm{OR} $ operation. It can be proved that under the constraints of this problem, there exists at least one pair $ P, A $ that satisfies the conditions. Solve $ T $ test cases per input. What is bitwise $ \mathrm{OR} $ ? The bitwise $ \mathrm{OR} $ of non-negative integers $ A, B $ , denoted $ A\ \mathrm{OR}\ B $ , is defined as follows: - When $ A\ \mathrm{OR}\ B $ is written in binary, the digit at position $ 2^k $ ( $ k \geq 0 $ ) is $ 1 $ if at least one of the digits at position $ 2^k $ in the binary representations of $ A $ and $ B $ is $ 1 $ , and $ 0 $ otherwise. For example, $ 3\ \mathrm{OR}\ 5 = 7 $ (in binary: $ 011\ \mathrm{OR}\ 101 = 111 $ ).

Input Format

The input is given from Standard Input in the following format: > $ T $ $ \mathrm{case}_1 $ $ \mathrm{case}_2 $ $ \vdots $ $ \mathrm{case}_T $ Each case is given in the following format: > $ N $

Output Format

Output a solution for $ \mathrm{case}_1, \mathrm{case}_2, \dots, \mathrm{case}_T $ in this order. For each case, output the answer in the following format: > $ P_1 $ $ P_2 $ $ \ldots $ $ P_N $ $ A_1 $ $ A_2 $ $ \ldots $ $ A_N $ If there are multiple solutions, any of them will be considered correct.

Explanation/Hint

### Sample Explanation 1 For the first test case, the sample output is $ P = (3, 14, 5), A = (13, 2, 10) $ . - One longest strictly increasing subsequence of $ (3~\mathrm{OR}~13, 14~\mathrm{OR}~13, 5~\mathrm{OR}~13) = (15, 15, 13) $ is $ (13) $ , whose length is $ 1 $ . - One longest strictly increasing subsequence of $ (3~\mathrm{OR}~2, 14~\mathrm{OR}~2, 5~\mathrm{OR}~2) = (3, 14, 7) $ is $ (3, 7) $ , whose length is $ 2 $ . - One longest strictly increasing subsequence of $ (3~\mathrm{OR}~10, 14~\mathrm{OR}~10, 5~\mathrm{OR}~10) = (11, 14, 15) $ is $ (11, 14, 15) $ , whose length is $ 3 $ . From the above, it can be confirmed that $ P = (3, 14, 5), A = (13, 2, 10) $ satisfies the conditions. ### Constraints - $ 1 \leq T $ - $ 1 \leq N \leq 1024 $ - For test cases in a single input, the sum of $ N $ is at most $ 200000 $ . - For test cases in a single input, the sum of $ N^2 $ is at most $ 1024^2 $ . - All input values are integers.