AT_agc074_d [AGC074D] Valid Output for DSU Problems

Description

A sequence that can be obtained as $ A $ by performing the following operations is called a **special sequence**: - Prepare an undirected graph consisting of $ N $ vertices and $ 0 $ edges, and a sequence $ A $ of length $ 0 $ . - Prepare queries for integers $ i,j $ satisfying $ 1 \leq i < j \leq N $ and $ q \in \{1,2\} $ : - When $ q=1 $ , connect vertices $ i $ and $ j $ with an edge. - When $ q=2 $ , append $ 1 $ to the end of $ A $ if vertices $ i $ and $ j $ are connected, and append $ 0 $ otherwise. - There are $ N(N-1) $ possible queries; rearrange them in any order and process them in that order. You are given a sequence $ B $ of length $ \frac{N(N-1)}{2} $ consisting of $ 0 $ and $ 1 $ . You can perform the following operation on $ B $ any number of times: - Choose an integer $ i $ satisfying $ 1 \leq i \leq \frac{N(N-1)}{2}-1 $ , and swap $ B_i $ and $ B_{i+1} $ . Determine whether it is possible to make $ B $ a special sequence, and if possible, find the minimum number of operations required. Solve $ T $ test cases per input.

Input Format

The input is given from Standard Input in the following format: > $ T $ $ case_1 $ $ case_2 $ $ \vdots $ $ case_T $ Each case is given in the following format: > $ N $ $ B_1 $ $ B_2 $ $ \ldots $ $ B_{\frac{N(N-1)}{2}} $

Output Format

Output $ T $ lines in total. The $ t $ -th line should contain the minimum number of operations required to make $ B $ a special sequence for the $ t $ -th test case if it is possible to do so, and `-1` otherwise.

Explanation/Hint

### Sample Explanation 1 In the first test case, if the queries are processed in the order $ (q,i,j)=(1,1,4), $ $ (2,1,4), $ $ (1,2,4), $ $ (2,1,2), $ $ (1,1,2), $ $ (2,2,3), $ $ (2,2,4), $ $ (2,3,4), $ $ (1,3,4), $ $ (1,1,3), $ $ (2,1,3), $ $ (1,2,3) $ , the resulting sequence is $ (1,1,0,1,0,1) $ , and $ B $ can be changed to this sequence by performing the operation once. Also, $ (1,1,0,1,1,0) $ is not a special sequence, so the answer is $ 1 $ . ### Constraints - $ 1 \leq T $ - $ 2 \leq N \leq 500 $ - $ |B| =\frac{N(N-1)}{2} $ - $ 0 \leq B_i \leq 1 $ - The sum of $ |B| $ over all test cases is at most $ 3 \times 10^5 $ . - The sum of $ N^3 $ over all test cases is at most $ 500^3 $ . - All input values are integers.