AT_arc038_a [ARC038A] カードと兄妹
题目描述
有 $N$ 张卡牌,第 $i$($1 \leq i \leq N$)张卡牌上写有整数 $A_i$。喜欢玩游戏的兄妹打算用这些卡牌进行一场游戏。
- 首先,将所有卡牌正面朝上,依次摆放在桌子上,使卡牌上的整数都能看到。
- 玩家在自己的回合中,从桌上的卡牌中恰好选择 $1$ 张卡牌并取走。
- 两人轮流操作,直到桌上的卡牌全部被取走为止。
- 最终,每位玩家取走的卡牌上整数之和即为该玩家的**得分**。
当两人都尽可能让自己的得分最大时,先手玩家的得分会是多少?
输入格式
输入以以下格式从标准输入读入。
> $N$
> $A_1\ A_2\ \ldots\ A_N$
- 第 $1$ 行输入一个整数 $N$,表示卡牌的数量,$1 \leq N \leq 1000$。
- 第 $2$ 行输入 $N$ 个用空格分隔的整数,表示每张卡牌上的数字。第 $i$ 个整数 $A_i$($1 \leq A_i \leq 1000$)表示第 $i$ 张卡牌上的数字。
输出格式
输出先手玩家的得分。输出需以换行符结尾。
说明/提示
## 样例解释 1
在这个例子中,游戏过程如下:
- 先手取走第 $2$ 张卡牌。
- 后手取走第 $1$ 张卡牌。
此时,先手的得分为 $628$,后手的得分为 $400$。
## 样例解释 2
在这个例子中,游戏过程如下:
- 先手取走第 $3$ 张卡牌。
- 后手取走第 $4$ 张卡牌。
- 先手取走第 $2$ 张卡牌。
- 后手取走第 $5$ 张卡牌。
- 先手取走第 $1$ 张卡牌。
此时,先手的得分为 $16$,后手的得分为 $11$。
由 ChatGPT 4.1 翻译