AT_arc038_a [ARC038A] カードと兄妹

题目描述

有 $N$ 张卡牌,第 $i$($1 \leq i \leq N$)张卡牌上写有整数 $A_i$。喜欢玩游戏的兄妹打算用这些卡牌进行一场游戏。 - 首先,将所有卡牌正面朝上,依次摆放在桌子上,使卡牌上的整数都能看到。 - 玩家在自己的回合中,从桌上的卡牌中恰好选择 $1$ 张卡牌并取走。 - 两人轮流操作,直到桌上的卡牌全部被取走为止。 - 最终,每位玩家取走的卡牌上整数之和即为该玩家的**得分**。 当两人都尽可能让自己的得分最大时,先手玩家的得分会是多少?

输入格式

输入以以下格式从标准输入读入。 > $N$ > $A_1\ A_2\ \ldots\ A_N$ - 第 $1$ 行输入一个整数 $N$,表示卡牌的数量,$1 \leq N \leq 1000$。 - 第 $2$ 行输入 $N$ 个用空格分隔的整数,表示每张卡牌上的数字。第 $i$ 个整数 $A_i$($1 \leq A_i \leq 1000$)表示第 $i$ 张卡牌上的数字。

输出格式

输出先手玩家的得分。输出需以换行符结尾。

说明/提示

## 样例解释 1 在这个例子中,游戏过程如下: - 先手取走第 $2$ 张卡牌。 - 后手取走第 $1$ 张卡牌。 此时,先手的得分为 $628$,后手的得分为 $400$。 ## 样例解释 2 在这个例子中,游戏过程如下: - 先手取走第 $3$ 张卡牌。 - 后手取走第 $4$ 张卡牌。 - 先手取走第 $2$ 张卡牌。 - 后手取走第 $5$ 张卡牌。 - 先手取走第 $1$ 张卡牌。 此时,先手的得分为 $16$,后手的得分为 $11$。 由 ChatGPT 4.1 翻译