AT_arc190_e [ARC190E] Gaps of 1 or 2
Description
You are given a length- $ N $ sequence $ A = (A_1, \ldots, A_N) $ of non-negative integers. Answer $ Q $ queries.
In the $ i $ -th query, you are given integers $ L_i $ and $ R_i $ such that $ 1 \leq L_i \leq R_i \leq N $ . Solve the following problem for the subsequence $ B = (A_{L_i}, \ldots, A_{R_i}) $ of length $ R_i - L_i + 1 $ .
> We repeat the following operation on $ B $ :
>
> - Choose integers $ i $ and $ j $ with $ 1 \leq i, j \leq |B| $ such that $ B_i \ge 1 $ , $ B_j \ge 1 $ , and $ 1 \leq j - i \leq 2 $ . Subtract $ 1 $ from $ B_i $ and $ B_j $ .
>
> Find the maximum number of times the operation can be performed.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ Q $ $ A_1 $ $ \cdots $ $ A_N $ $ L_1 $ $ R_1 $ $ \vdots $ $ L_Q $ $ R_Q $
Output Format
Print $ Q $ lines.
The $ i $ -th line should contain the maximum number of times the operation can be performed for $ B = (A_{L_i}, \ldots, A_{R_i}) $ .
Explanation/Hint
### Sample Explanation 1
In this example, we solve the problem for $ B = (1,1,4,0,3,2) $ . We can perform five operations as follows:
- Choose $ i=1 $ and $ j=3 $ . Then $ B = (0,1,3,0,3,2) $ .
- Choose $ i=2 $ and $ j=3 $ . Then $ B = (0,0,2,0,3,2) $ .
- Choose $ i=3 $ and $ j=5 $ . Then $ B = (0,0,1,0,2,2) $ .
- Choose $ i=5 $ and $ j=6 $ . Then $ B = (0,0,1,0,1,1) $ .
- Choose $ i=5 $ and $ j=6 $ . Then $ B = (0,0,1,0,0,0) $ .
### Constraints
- $ 1 \leq N \leq 200000 $
- $ 1 \leq Q \leq 200000 $
- $ 0 \leq A_i \leq 10^9 $
- $ 1 \leq L_i \leq R_i \leq N $
- All input values are integers.