AT_arc191_c [ARC191C] A^n - 1
Description
You are given a positive integer $ N $ between $ 1 $ and $ 10^9 $ , inclusive.
Find one pair of positive integers $ (A, M) $ satisfying the following conditions. It can be proved that such a pair of integers always exists under the constraints.
- Both $ A $ and $ M $ are positive integers between $ 1 $ and $ 10^{18} $ , inclusive.
- There exists a positive integer $ n $ such that $ A^n - 1 $ is a multiple of $ M $ , and the smallest such $ n $ is $ N $ .
You are given $ T $ test cases; solve each of them.
Input Format
The input is given from Standard Input in the following format:
> $ T $ $ \text{case}_1 $ $ \text{case}_2 $ $ \vdots $ $ \text{case}_T $
Here, $ \text{case}_i $ denotes the $ i $ -th test case.
Each test case is given in the following format:
> $ N $
Output Format
For each test case, print a pair of positive integers $ (A, M) $ in the following format:
> $ A $ $ M $
If there are multiple valid solutions, any one of them is considered correct.
Explanation/Hint
### Sample Explanation 1
Consider $ \text{case}_1 $ .
For example, if we choose $ (A,M)=(2,7) $ , then:
- When $ n=1 $ : $ 2^1 - 1 = 1 $ is not a multiple of $ 7 $ .
- When $ n=2 $ : $ 2^2 - 1 = 3 $ is not a multiple of $ 7 $ .
- When $ n=3 $ : $ 2^3 - 1 = 7 $ is a multiple of $ 7 $ .
Hence, the smallest $ n $ for which $ A^n - 1 $ is a multiple of $ M $ is $ 3 $ . Therefore, $ (A,M)=(2,7) $ is a correct solution. Other valid solutions include $ (A,M)=(100,777) $ .
### Constraints
- $ 1 \le T \le 10^4 $
- $ 1 \le N \le 10^9 $
- All input values are integers.