AT_arc192_a [ARC192A] ARC Arc

Description

You are given a positive integer $ N $ and a sequence $ A=(A_1,A_2,\dots,A_N) $ of length $ N $ , consisting of $ 0 $ and $ 1 $ . We call a string $ S $ of length $ N $ , consisting only of uppercase English letters, a **good string** if it is possible to perform the following operation any number of times (possibly zero) so that the sequence $ A $ contains no $ 0 $ . Here, $ S_i $ $ (1\leq i\leq N) $ denotes the $ i $ -th character of $ S $ , and we define $ S_{N+1}=S_1 $ , $ S_{N+2}=S_2 $ , and $ A_{N+1}=A_1 $ . - Perform one of the following operations: - Choose an integer $ i $ with $ 1\leq i\leq N $ such that $ S_i= $ `A`, $ S_{i+1}= $ `R`, and $ S_{i+2}= $ `C`, and replace each of $ A_i $ and $ A_{i+1} $ with $ 1 $ . - Choose an integer $ i $ with $ 1\leq i\leq N $ such that $ S_{i+2}= $ `A`, $ S_{i+1}= $ `R`, and $ S_i= $ `C`, and replace each of $ A_i $ and $ A_{i+1} $ with $ 1 $ . Determine whether there exists a good string.

Input Format

The input is given from Standard Input in the following format: > $ N $ $ A_1 $ $ A_2 $ $ \dots $ $ A_N $

Output Format

If there exists a good string, print `Yes`; otherwise, print `No`. The judge is case-insensitive; for example, if the correct answer is `Yes`, outputs such as `yes`, `YES`, or `yEs` will also be accepted.

Explanation/Hint

### Sample Explanation 1 For example, `RARCARCCRAGC` is a good string. This is because it is possible to change all elements of $ A $ to $ 1 $ by performing the following operations: - Initially, $ A=(0,1,0,1,1,1,1,0,1,1,1,0) $ . - Perform the first operation with $ i=2 $ . Then, $ A=(0,1,1,1,1,1,1,0,1,1,1,0) $ . - Perform the first operation with $ i=5 $ . Then, $ A=(0,1,1,1,1,1,1,0,1,1,1,0) $ . - Perform the second operation with $ i=8 $ . Then, $ A=(0,1,1,1,1,1,1,1,1,1,1,0) $ . - Perform the second operation with $ i=12 $ . Then, $ A=(1,1,1,1,1,1,1,1,1,1,1,1) $ . Since there exists a good string, output `Yes`. ### Sample Explanation 2 Good strings do not exist. ### Sample Explanation 3 Since $ A $ already contains no $ 0 $ , every string of length $ 29 $ consisting of uppercase English letters is a good string. ### Constraints - $ 3\leq N\leq 200000 $ - $ A_i\in \lbrace 0,1 \rbrace $ $ (1\leq i\leq N) $ - All input values are integers.