AT_arc192_a [ARC192A] ARC Arc
Description
You are given a positive integer $ N $ and a sequence $ A=(A_1,A_2,\dots,A_N) $ of length $ N $ , consisting of $ 0 $ and $ 1 $ .
We call a string $ S $ of length $ N $ , consisting only of uppercase English letters, a **good string** if it is possible to perform the following operation any number of times (possibly zero) so that the sequence $ A $ contains no $ 0 $ . Here, $ S_i $ $ (1\leq i\leq N) $ denotes the $ i $ -th character of $ S $ , and we define $ S_{N+1}=S_1 $ , $ S_{N+2}=S_2 $ , and $ A_{N+1}=A_1 $ .
- Perform one of the following operations:
- Choose an integer $ i $ with $ 1\leq i\leq N $ such that $ S_i= $ `A`, $ S_{i+1}= $ `R`, and $ S_{i+2}= $ `C`, and replace each of $ A_i $ and $ A_{i+1} $ with $ 1 $ .
- Choose an integer $ i $ with $ 1\leq i\leq N $ such that $ S_{i+2}= $ `A`, $ S_{i+1}= $ `R`, and $ S_i= $ `C`, and replace each of $ A_i $ and $ A_{i+1} $ with $ 1 $ .
Determine whether there exists a good string.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ A_1 $ $ A_2 $ $ \dots $ $ A_N $
Output Format
If there exists a good string, print `Yes`; otherwise, print `No`.
The judge is case-insensitive; for example, if the correct answer is `Yes`, outputs such as `yes`, `YES`, or `yEs` will also be accepted.
Explanation/Hint
### Sample Explanation 1
For example, `RARCARCCRAGC` is a good string. This is because it is possible to change all elements of $ A $ to $ 1 $ by performing the following operations:
- Initially, $ A=(0,1,0,1,1,1,1,0,1,1,1,0) $ .
- Perform the first operation with $ i=2 $ . Then, $ A=(0,1,1,1,1,1,1,0,1,1,1,0) $ .
- Perform the first operation with $ i=5 $ . Then, $ A=(0,1,1,1,1,1,1,0,1,1,1,0) $ .
- Perform the second operation with $ i=8 $ . Then, $ A=(0,1,1,1,1,1,1,1,1,1,1,0) $ .
- Perform the second operation with $ i=12 $ . Then, $ A=(1,1,1,1,1,1,1,1,1,1,1,1) $ .
Since there exists a good string, output `Yes`.
### Sample Explanation 2
Good strings do not exist.
### Sample Explanation 3
Since $ A $ already contains no $ 0 $ , every string of length $ 29 $ consisting of uppercase English letters is a good string.
### Constraints
- $ 3\leq N\leq 200000 $
- $ A_i\in \lbrace 0,1 \rbrace $ $ (1\leq i\leq N) $
- All input values are integers.