AT_arc194_b [ARC194B] Minimum Cost Sort

Description

You are given a permutation $ P = (P_1, P_2, \ldots, P_N) $ of $ (1, 2, \ldots, N) $ . Takahashi can repeatedly perform the following operation on $ P $ (possibly zero times): - Choose an integer $ i $ satisfying $ 1 \leq i \leq N-1 $ . Pay a cost of $ i $ , and swap $ P_i $ and $ P_{i+1} $ . Find the minimum total cost required to sort $ P $ in ascending order.

Input Format

The input is given from Standard Input in the following format: > $ N $ $ P_1 $ $ P_2 $ $ \ldots $ $ P_N $

Output Format

Print the minimum total cost required to sort $ P $ in ascending order.

Explanation/Hint

### Sample Explanation 1 Takahashi can sort $ P $ in ascending order as follows: - Pay a cost of $ 1 $ and swap $ P_1 = 3 $ and $ P_2 = 2 $ . Now, $ P = (2, 3, 1) $ . - Pay a cost of $ 2 $ and swap $ P_2 = 3 $ and $ P_3 = 1 $ . Now, $ P = (2, 1, 3) $ . - Pay a cost of $ 1 $ and swap $ P_1 = 2 $ and $ P_2 = 1 $ . Now, $ P = (1, 2, 3) $ . The total cost for these operations is $ 4 $ , which is the minimum possible. ### Constraints - $ 2 \leq N \leq 2 \times 10^5 $ - $ (P_1, P_2, \ldots, P_N) $ is a permutation of $ (1, 2, \ldots, N) $ . - All input values are integers.