AT_arc194_e [ARC194E] Swap 0^X and 1^Y
Description
You are given two strings $ S $ and $ T $ , each of length $ N $ and consisting of `0` and `1`, as well as two positive integers $ X $ and $ Y $ . For $ i = 1, 2, \ldots, N $ , let $ S_i $ denote the $ i $ -th character of $ S $ .
Determine whether it is possible to make $ S $ identical to $ T $ by repeatedly performing Operations A and B below any number of times (possibly zero) in any order:
- (Operation A) Choose an integer $ i $ satisfying $ 1 \leq i \leq N-(X+Y)+1 $ , $ S_{i} = S_{i+1} = \cdots = S_{i+X-1} = $ `0`, and $ S_{i+X} = S_{i+X+1} = \cdots = S_{i+X+Y-1} = $ `1`, then change each of $ S_{i}, S_{i+1}, \ldots, S_{i+Y-1} $ to `1` and each of $ S_{i+Y}, S_{i+Y+1}, \ldots, S_{i+Y+X-1} $ to `0`.
- (Operation B) Choose an integer $ i $ satisfying $ 1 \leq i \leq N-(X+Y)+1 $ , $ S_{i} = S_{i+1} = \cdots = S_{i+Y-1} = $ `1`, and $ S_{i+Y} = S_{i+Y+1} = \cdots = S_{i+Y+X-1} = $ `0`, then change each of $ S_{i}, S_{i+1}, \ldots, S_{i+X-1} $ to `0` and each of $ S_{i+X}, S_{i+X+1}, \ldots, S_{i+X+Y-1} $ to `1`.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ X $ $ Y $ $ S $ $ T $
Output Format
If it is possible to make $ S $ identical to $ T $ , print `Yes`; otherwise, print `No`.
Explanation/Hint
### Sample Explanation 1
The following procedure can transform $ S $ into $ T $ :
- First, perform Operation A with $ i = 2 $ . Now, $ S = $ `010011001`.
- Next, perform Operation B with $ i = 6 $ . Now, $ S = $ `010010011`.
- Finally, perform Operation A with $ i = 3 $ . Now, $ S = $ `011000011`.
Thus, print `Yes`.
### Sample Explanation 2
It is impossible to make $ S $ identical to $ T $ . Thus, print `No`.
### Constraints
- $ 1 \leq N \leq 5 \times 10^5 $
- $ 1 \leq X, Y \leq N $
- $ S $ and $ T $ are strings of length $ N $ consisting of `0` and `1`.
- All input values are integers.