AT_arc195_e [ARC195E] Random Tree Distance

Description

There is an integer sequence $ A = (A_2,A_3,\ldots,A_N) $ . Also, for an integer sequence $ P=(P_2, P_3, \ldots ,P_N) $ where $ 1 \leq P_i \leq i-1 $ for each $ i $ $ (2 \leq i \leq N) $ , define the weighted tree $ T(P) $ with $ N $ vertices, rooted at vertex $ 1 $ , as follows: - A rooted tree where, for each $ i $ $ (2 \leq i \leq N) $ , the parent of $ i $ is $ P_i $ , and the weight of the edge between $ i $ and $ P_i $ is $ A_i $ . You are given $ Q $ queries. Process them in order. The $ i $ -th query is as follows: - You are given integers $ u_i $ and $ v_i $ , each between $ 1 $ and $ N $ . For each of the possible $ (N-1)! $ sequences $ P $ , take the tree $ T(P) $ and consider the distance between vertices $ u_i $ and $ v_i $ in this tree. Output the sum, modulo $ 998244353 $ , of these distances over all $ T(P) $ . Here, the distance between two vertices $ u_i $ and $ v_i $ is the sum of the weights of the edges on the unique path (not visiting the same vertex more than once) that connects them.

Input Format

The input is given from Standard Input in the following format: > $ N $ $ Q $ $ A_2 $ $ A_3 $ $ \ldots $ $ A_N $ $ u_1 $ $ v_1 $ $ u_2 $ $ v_2 $ $ \vdots $ $ u_Q $ $ v_Q $

Output Format

Print $ Q $ lines. The $ i $ -th line should contain the answer to the $ i $ -th query.

Explanation/Hint

### Sample Explanation 1 - If $ P = (1,1) $ , then in the tree $ T(P) $ , the distance between vertices $ 1 $ and $ 2 $ is $ 1 $ , and the distance between vertices $ 1 $ and $ 3 $ is $ 1 $ . - If $ P = (1,2) $ , then in the tree $ T(P) $ , the distance between vertices $ 1 $ and $ 2 $ is $ 1 $ , and the distance between vertices $ 1 $ and $ 3 $ is $ 2 $ . Therefore, the total distance between vertices $ 1 $ and $ 2 $ over all $ T(P) $ is $ 2 $ , and the total distance between vertices $ 1 $ and $ 3 $ over all $ T(P) $ is $ 3 $ . ### Sample Explanation 3 Remember to take the sum modulo $ 998244353 $ . ### Constraints - $ 2 \leq N \leq 2 \times 10^5 $ - $ 1 \leq Q \leq 2 \times 10^5 $ - $ 1 \leq A_i \leq 10^9 $ - $ 1 \leq u_i < v_i \leq N $ - All input values are integers.