AT_arc199_d [ARC199D] Limestone
Description
You are given positive integers $ H,W $ .
There is an $ H \times W $ matrix $ A=(A_{i,j})\ (1\leq i\leq H,1\leq j\leq W) $ , where initially all elements are $ 0 $ .
You can perform the following two types of operations on this matrix in any order and any number of times:
- Choose integers $ r,c\ (1\leq r\leq H,1\leq c\leq W) $ . Set all of $ A_{r,1},A_{r,2},\ldots,A_{r,c} $ to $ 1 $ .
- Choose integers $ r,c\ (1\leq r\leq H,1\leq c\leq W) $ . Set all of $ A_{1,c},A_{2,c},\ldots,A_{r,c} $ to $ 1 $ .
Find the sum of $ \displaystyle \sum_{i=1}^H\sum_{j=1}^W A_{i,j} $ over all matrices that can be obtained by repeating the above operations, modulo $ 998244353 $ .
Input Format
The input is given from Standard Input in the following format:
> $ H $ $ W $
Output Format
Output the sum of $ \displaystyle \sum_{i=1}^H\sum_{j=1}^W A_{i,j} $ over all matrices that can be obtained by repeating the operations, modulo $ 998244353 $ .
Explanation/Hint
### Sample Explanation 1
There are $ 14 $ matrices that can be obtained by repeating the operations:
$ \begin{pmatrix}0&0 \\ 0&0\end{pmatrix}
\begin{pmatrix}1&0 \\ 0&0\end{pmatrix}
\begin{pmatrix}0&1 \\ 0&0\end{pmatrix}
\begin{pmatrix}1&1 \\ 0&0\end{pmatrix}
\begin{pmatrix}0&0 \\ 1&0\end{pmatrix}
\begin{pmatrix}1&0 \\ 1&0\end{pmatrix}
\begin{pmatrix}0&1 \\ 1&0\end{pmatrix}
\begin{pmatrix}1&1 \\ 1&0\end{pmatrix}
\begin{pmatrix}0&1 \\ 0&1\end{pmatrix}
\begin{pmatrix}1&1 \\ 0&1\end{pmatrix}
\begin{pmatrix}0&0 \\ 1&1\end{pmatrix}
\begin{pmatrix}1&0 \\ 1&1\end{pmatrix}
\begin{pmatrix}0&1 \\ 1&1\end{pmatrix}
\begin{pmatrix}1&1 \\ 1&1\end{pmatrix} $
The answer is $ 0+1+1+2+1+2+2+3+2+3+2+3+3+4=29 $ .
$ \begin{pmatrix}0&0 \\ 0&1\end{pmatrix} $ and $ \begin{pmatrix}1&0 \\ 0&1\end{pmatrix} $ cannot be obtained by any sequence of operations.
### Constraints
- $ 1\leq H,W $
- $ HW\leq 2\times 10^5 $
- All input values are integers.