AT_arc200_a [ARC200A] Dot Product
Description
You are given sequences of positive integers of length $ N $ : $ A=(A_1,A_2,\ldots,A_N),B=(B_1,B_2,\ldots,B_N) $ .
Determine whether there exists an integer sequence $ X=(X_1,X_2,\ldots,X_N) $ that satisfies all the following conditions, and if it exists, find one.
- $ -10^8\le X_i\le 10^8 $ $ (1\le i\le N) $
- $ \displaystyle \sum_{i=1}^N A_iX_i > 0 $
- $ \displaystyle \sum_{i=1}^N B_iX_i < 0 $
You are given $ T $ test cases, so find the answer for each.
Input Format
The input is given from Standard Input in the following format:
> $ T $ $ \text{case}_1 $ $ \text{case}_2 $ $ \vdots $ $ \text{case}_T $
Each test case is given in the following format:
> $ N $ $ A_1 $ $ A_2 $ $ \ldots $ $ A_N $ $ B_1 $ $ B_2 $ $ \ldots $ $ B_N $
Output Format
Output your solutions for the test cases in order, separated by newlines.
For each test case, if there is no $ X $ that satisfies all conditions, output `No`.
Otherwise, output an $ X $ that satisfies all conditions in the following format:
> Yes $ X_1 $ $ X_2 $ $ \ldots $ $ X_N $
If there are multiple $ X $ that satisfy the conditions, you may output any of them.
Explanation/Hint
### Sample Explanation 1
For the first test case, if we set $ X=(4,-5,1) $ , then
- $ \displaystyle \sum_{i=1}^3 A_iX_i=3\times 4+1\times (-5)+4\times 1=11>0 $
- $ \displaystyle \sum_{i=1}^3 B_iX_i=1\times 4+5\times (-5)+1\times 1=-20