AT_arc200_b [ARC200B] LCM

Description

You are given positive integers $ A_1,A_2,A_3 $ . Determine whether there exists a pair of positive integers $ (X_1,X_2) $ that satisfies all the following conditions, and if it exists, find one. - $ X_1 $ is an integer with $ A_1 $ digits in decimal notation. - $ X_2 $ is an integer with $ A_2 $ digits in decimal notation. - The least common multiple of $ X_1 $ and $ X_2 $ is an integer with $ A_3 $ digits in decimal notation. You are given $ T $ test cases, so find the answer for each.

Input Format

The input is given from Standard Input in the following format: > $ T $ $ \text{case}_1 $ $ \text{case}_2 $ $ \vdots $ $ \text{case}_T $ Each test case is given in the following format: > $ A_1 $ $ A_2 $ $ A_3 $

Output Format

Output your solutions for the test cases in order, separated by newlines. For each test case, if there is no $ (X_1,X_2) $ that satisfies all conditions, output `No`. Otherwise, output a $ (X_1,X_2) $ that satisfies all conditions in the following format: > Yes $ X_1 $ $ X_2 $ If there are multiple $ (X_1,X_2) $ that satisfy the conditions, you may output any of them.

Explanation/Hint

### Sample Explanation 1 For the first test case, if we set $ (X_1,X_2)=(2025,200) $ , then the least common multiple of $ X_1,X_2 $ is $ 16200 $ , which satisfies the conditions. Other examples that satisfy the conditions include $ (X_1,X_2)=(2025,125),(7777,231) $ . ### Constraints - $ 1\le T\le 17^3 $ - $ 1\le A_1,A_2,A_3\le 17 $ - All input values are integers.