AT_arc200_b [ARC200B] LCM
Description
You are given positive integers $ A_1,A_2,A_3 $ .
Determine whether there exists a pair of positive integers $ (X_1,X_2) $ that satisfies all the following conditions, and if it exists, find one.
- $ X_1 $ is an integer with $ A_1 $ digits in decimal notation.
- $ X_2 $ is an integer with $ A_2 $ digits in decimal notation.
- The least common multiple of $ X_1 $ and $ X_2 $ is an integer with $ A_3 $ digits in decimal notation.
You are given $ T $ test cases, so find the answer for each.
Input Format
The input is given from Standard Input in the following format:
> $ T $ $ \text{case}_1 $ $ \text{case}_2 $ $ \vdots $ $ \text{case}_T $
Each test case is given in the following format:
> $ A_1 $ $ A_2 $ $ A_3 $
Output Format
Output your solutions for the test cases in order, separated by newlines.
For each test case, if there is no $ (X_1,X_2) $ that satisfies all conditions, output `No`.
Otherwise, output a $ (X_1,X_2) $ that satisfies all conditions in the following format:
> Yes $ X_1 $ $ X_2 $
If there are multiple $ (X_1,X_2) $ that satisfy the conditions, you may output any of them.
Explanation/Hint
### Sample Explanation 1
For the first test case, if we set $ (X_1,X_2)=(2025,200) $ , then the least common multiple of $ X_1,X_2 $ is $ 16200 $ , which satisfies the conditions. Other examples that satisfy the conditions include $ (X_1,X_2)=(2025,125),(7777,231) $ .
### Constraints
- $ 1\le T\le 17^3 $
- $ 1\le A_1,A_2,A_3\le 17 $
- All input values are integers.