AT_arc201_d [ARC201D] Match, Mod, Minimize
Description
You are given sequences of non-negative integers $ A=(A_1,A_2,\dots ,A_N),B=(B_1,B_2,\dots ,B_N) $ of length $ N $ and a positive integer $ M $ .
When the elements of $ A $ can be rearranged freely, find the minimum possible value of $ \max_{1\le i\le N} ((A_i+B_i) \bmod M) $ .
$ T $ test cases are given, so find the answer for each.
Input Format
The input is given from Standard Input in the following format:
> $ T $ $ \text{case}_1 $ $ \text{case}_2 $ $ \vdots $ $ \text{case}_T $
Each test case is given in the following format:
> $ N $ $ M $ $ A_1 $ $ A_2 $ $ \ldots $ $ A_N $ $ B_1 $ $ B_2 $ $ \ldots $ $ B_N $
Output Format
Output $ T $ lines.
The $ j $ -th line should contain the minimum possible value of $ \max_{1\le i\le N} ((A_i+B_i) \bmod M) $ for the $ j $ -th test case.
Explanation/Hint
### Sample Explanation 1
For the first test case, if we rearrange $ A $ to $ 4,3,1 $ , then $ (A_i+B_i) \bmod M $ becomes $ 0,3,2 $ respectively, and the $ \max $ of these is $ 3 $ .
### Constraints
- $ 1 \le T \le 10^5 $
- $ 1 \le N \le 3 \times 10^5 $
- $ 1 \le M \le 10^9 $
- $ 0 \le A_i,B_i \lt M $
- The sum of $ N $ over all test cases is at most $ 3 \times 10^5 $ .
- All input values are integers.