AT_arc202_c [ARC202C] Repunits
Description
For a positive integer $ n $ , define $ R_n $ as "the integer obtained by interpreting a string of $ n $ consecutive $ 1 $ s as a decimal number". For example, $ R_3 = 111 $ .
You are given a positive integer sequence $ A = (A_1, A_2, \dots, A_N) $ .
For $ k = 1, 2, \dots, N $ , calculate $ \mathrm{LCM}(R_{A_1}, R_{A_2}, \dots, R_{A_k}) \bmod 998244353 $ . Here, $ \mathrm{LCM} $ is the function that calculates the least common multiple.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ A_1 $ $ A_2 $ $ \dots $ $ A_N $
Output Format
Output $ N $ lines. The $ k $ -th line should contain $ \mathrm{LCM}(R_{A_1}, R_{A_2}, \dots, R_{A_k}) \bmod 998244353 $ .
Explanation/Hint
### Sample Explanation 1
For $ k=1 $ , $ \mathrm{LCM}(11) \bmod 998244353 = 11 $ .
For $ k=2 $ , $ \mathrm{LCM}(11,1111) \bmod 998244353= 1111 $ .
For $ k=3 $ , $ \mathrm{LCM}(11,1111,111111) \bmod 998244353= 11222211 $ .
### Constraints
- $ 1 \leq N \leq 2 \times 10^5 $
- $ 1 \leq A_i \leq 2 \times 10^5 $
- All input values are integers.