AT_arc203_b [ARC203B] Swap If Equal Sum
Description
You are given length- $ N $ integer sequences $ A=(A_1,A_2,\dots,A_N) $ and $ B=(B_1,B_2,\dots,B_N) $ , each consisting of $ 0 $ and $ 1 $ . Let $ A[i,j] $ denote the consecutive subsequence of $ A $ from the $ i $ -th through the $ j $ -th element. If $ i>j $ , then $ A[i,j] $ is a length- $ 0 $ sequence. You can perform the following operation on $ A $ any number of times:
- Choose four integers $ a,b,c,d $ that satisfy the following two conditions:
- $ 1 \leq a \leq b < c \leq d \leq N $
- $ \sum_{i=a}^{b}{A_i}=\sum_{i=c}^{d}{A_i} $
- Swap $ A[a,b] $ and $ A[c,d] $ . More precisely, replace $ A $ with the sequence formed by concatenating $ A[1,a-1] $ , $ A[c,d] $ , $ A[b+1,c-1] $ , $ A[a,b] $ , $ A[d+1,N] $ in this order.
Determine whether $ A $ can be made to match $ B $ .
Solve $ T $ test cases for each input file.
Input Format
The input is given from Standard Input in the following format:
> $ T $ $ case_1 $ $ case_2 $ $ \vdots $ $ case_T $
Each case is given in the following format:
> $ N $ $ A_1 $ $ A_2 $ $ \dots $ $ A_N $ $ B_1 $ $ B_2 $ $ \dots $ $ B_N $
Output Format
Output the answers in a total of $ T $ lines. The $ t $ -th line should contain `Yes` if $ A $ can be made to match $ B $ for the $ t $ -th test case, and `No` otherwise.
Explanation/Hint
### Sample Explanation 1
In the first test case, $ A $ is initially $ (1,1,1,0,0,1) $ .
By choosing $ (a,b,c,d)=(1,2,3,6) $ and performing the operation, $ A $ becomes $ (1,0,0,1,1,1) $ .
Next, by choosing $ (a,b,c,d)=(1,2,3,4) $ and performing the operation, $ A $ becomes $ (0,1,1,0,1,1) $ , which matches $ B $ .
In the second test case, $ A $ cannot be made to match $ B $ .
In the third test case, $ A $ already matches $ B $ from the beginning.
### Constraints
- $ 1 \leq T \leq 10^5 $
- $ 2 \leq N \leq 2 \times 10^5 $
- $ 0 \leq A_i \leq 1 $
- $ 0 \leq B_i \leq 1 $
- The sum of $ N $ over all test cases is at most $ 2\times 10^5 $ .
- All input values are integers.