AT_arc203_e [ARC203E] Tile Grid with One Hole
Description
There is a grid with $ H $ rows and $ W $ columns, where the cell at the $ i $ -th row from the top and $ j $ -th column from the left is denoted as $ (i,j) $ . The grid has a hole only in cell $ (r,c) $ . We will tile all cells without a hole using several tiles. You are given non-negative integers $ N $ and $ M $ such that $ H \times W=L \times (N+M)+1 $ . A tile of $ 1 $ row and $ L $ columns is called a horizontal tile, and a tile of $ L $ rows and $ 1 $ column is called a vertical tile. Determine whether there exists a way to tile using exactly $ N $ horizontal tiles and $ M $ vertical tiles without rotation, and also show one such way if it exists. For details on the output format and more precise conditions, check the output section.
Solve $ T $ test cases for each input file.
Input Format
The input is given from Standard Input in the following format:
> $ T $ $ case_1 $ $ case_2 $ $ \vdots $ $ case_T $
Each case is given in the following format:
> $ H $ $ W $ $ L $ $ N $ $ M $ $ r $ $ c $
Output Format
Output the answers in the following format:
> $ output_1 $ $ output_2 $ $ \vdots $ $ output_T $
Here, $ output_t $ represents the output for the $ t $ -th test case.
For each case, if it is possible to tile satisfying the conditions, let $ (A_i,B_i) $ be the leftmost cell covered by the $ i $ -th horizontal tile and $ (C_j,D_j) $ be the topmost cell covered by the $ j $ -th vertical tile, and output in the following format:
> Yes $ A_1 $ $ B_1 $ $ A_2 $ $ B_2 $ $ \vdots $ $ A_N $ $ B_N $ $ C_1 $ $ D_1 $ $ C_2 $ $ D_2 $ $ \vdots $ $ C_M $ $ D_M $
More precisely, output integer sequences $ A=(A_1,A_2,\dots,A_N),B=(B_1,B_2,\dots,B_N) $ of length $ N $ and $ C=(C_1,C_2,\dots,C_M),D=(D_1,D_2,\dots,D_M) $ of length $ M $ that satisfy all of the following conditions:
- The union of $ \{(A_i,B_i+l)\mid i=1,2,\dots,N,\;l=0,1,\dots,L-1\} $ , $ \{(C_j+l,D_j)\mid j=1,2,\dots,M,\;l=0,1,\dots,L-1\} $ , and $ \{(r,c)\} $ equals $ \{(h,w)\mid h=1,2,\dots,H,\;w=1,2,\dots,W\} $ .
Note that due to the constraint $ H \times W=L \times (N+M)+1 $ , when this condition holds, tiles do not overlap with each other.
If it is impossible to satisfy the conditions, output `No`.
Explanation/Hint
### Sample Explanation 1
In the third test case, there is a hole in the top-left cell. It can be tiled as follows:
```
┌─┬─┐
┌─┤ │ │
│ ├─┴─┤
└─┴───┘
```
### Constraints
- $ 1 \leq T \leq 5 $
- $ 1 \leq H \leq 1000 $
- $ 1 \leq W \leq 1000 $
- $ 2 \leq H \times W $
- $ 2 \leq L \leq 1000 $
- $ 0 \leq N $
- $ 0 \leq M $
- $ 1 \leq r \leq H $
- $ 1 \leq c \leq W $
- $ H \times W=L \times (N+M)+1 $
- The sum of $ N+M $ over all test cases is at most $ 6\times 10^5 $ .
- All input values are integers.