AT_arc205_b [ARC205B] Triangle Toggle
Description
There is a complete graph with $ N $ vertices numbered $ 1 $ to $ N $ . Each edge is colored black or white. For $ i=1,2,\ldots,M $ , the edge connecting vertices $ U_i $ and $ V_i $ is colored black, and all other edges are colored white.
You can perform the following operation zero or more times.
- Choose a triple of integers $ (a,b,c) $ satisfying $ 1\le a < b < c \le N $ , and repaint each of the following three edges: white to black, black to white.
- The edge connecting vertices $ a $ and $ b $
- The edge connecting vertices $ b $ and $ c $
- The edge connecting vertices $ a $ and $ c $
Find the maximum number of edges that can be colored black when you perform operations appropriately.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ M $ $ U_1 $ $ V_1 $ $ U_2 $ $ V_2 $ $ \vdots $ $ U_M $ $ V_M $
Output Format
Output the answer.
Explanation/Hint
### Sample Explanation 1
By performing two operations as follows, you can make the number of black edges $ 5 $ .
- Choose $ (a,b,c)=(1,3,4) $ . Then, we have the following four black edges.
- The edge connecting vertices $ 1 $ and $ 2 $
- The edge connecting vertices $ 1 $ and $ 3 $
- The edge connecting vertices $ 1 $ and $ 4 $
- The edge connecting vertices $ 3 $ and $ 4 $
- Choose $ (a,b,c)=(2,3,4) $ . Then, we have the following five black edges.
- The edge connecting vertices $ 1 $ and $ 2 $
- The edge connecting vertices $ 1 $ and $ 3 $
- The edge connecting vertices $ 1 $ and $ 4 $
- The edge connecting vertices $ 2 $ and $ 3 $
- The edge connecting vertices $ 2 $ and $ 4 $
You cannot make the number of black edges more than $ 5 $ , so output $ 5 $ .
### Sample Explanation 3
Be careful about overflow.
### Constraints
- $ 3\le N\le 2\times 10^5 $
- $ \displaystyle 0\le M\le 2\times 10^5 $
- $ 1\le U_i < V_i \le N $
- $ (U_i , V_i) \neq (U_j , V_j) $ $ (i \neq j) $
- All input values are integers.