AT_arc207_c [ARC207C] Combine to Make Non-decreasing
Description
You are given an integer sequence of length $ N $ , $ A=(A_1, A_2, \cdots, A_N) $ . Snuke wants to make $ A $ a non-decreasing sequence.
He can perform the following operation zero or more times.
- Choose two adjacent elements of $ A $
- Remove these two elements and insert the bitwise $ \mathrm{OR} $ of these two values at the original position
Find the maximum possible value of the length of $ A $ when $ A $ becomes a non-decreasing sequence.
What is bitwise $ \mathrm{OR} $ ? The bitwise $ \mathrm{OR} $ of non-negative integers $ A $ and $ B $ , $ A\ \mathrm{OR}\ B $ , is defined as follows.
- When $ A\ \mathrm{OR}\ B $ is written in binary, the digit in the $ 2^k $ place ( $ k \geq 0 $ ) is $ 1 $ if at least one of the digits in the $ 2^k $ place of $ A $ and $ B $ written in binary is $ 1 $ , and $ 0 $ otherwise.
For example, $ 3\ \mathrm{OR}\ 5 = 7 $ (in binary: $ 011\ \mathrm{OR}\ 101 = 111 $ ). What is a non-decreasing sequence? A sequence $ a=(a_1,a_2, \cdots, a_n) $ is a non-decreasing sequence if and only if $ a_1 \le a_2 \le \ldots \le a_n $ holds.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ A_1 $ $ A_2 $ $ \ldots $ $ A_N $
Output Format
Print the answer.
Explanation/Hint
### Sample Explanation 1
- If the $ 1 $ -st and $ 2 $ -nd elements are chosen in the first operation, $ A=(3,2) $ and $ A $ is not a non-decreasing sequence.
- If the $ 2 $ -nd and $ 3 $ -rd elements are chosen in the first operation, $ A=(3,3) $ and $ A $ is a non-decreasing sequence.
### Constraints
- $ 1 \le N \le 2 \times 10^5 $
- $ 1 \le A_i