AT_arc208_b [ARC208B] Sum of Mod
Description
You are given positive integers $ N $ and $ K $ .
Find one length- $ N $ sequence of positive integers $ A=(A_1,A_2,\ldots,A_N) $ with the minimum value of $ A_N $ among the ones that satisfy all of the following conditions.
- $ A $ is non-decreasing. That is, $ A_i \le A_{i+1} $ for $ 1\le i\le N-1 $ .
- $ \displaystyle \sum_{i=1}^{N-1} (A_{i+1} \bmod A_i)=K $ .
You are given $ T $ test cases; solve each of them.
Input Format
The input is given from Standard Input in the following format:
> $ T $ $ \text{case}_1 $ $ \text{case}_2 $ $ \vdots $ $ \text{case}_T $
Each test case is given in the following format:
> $ N $ $ K $
Output Format
Output the answers for each test case in order, separated by newlines.
For each test case, print $ A $ that satisfies all conditions and has the minimum value of $ A_N $ in the following format:
> $ A_1 $ $ A_2 $ $ \ldots $ $ A_N $
If there are multiple $ A $ that satisfy all conditions and have the minimum value of $ A_N $ , any of them will be accepted.
Explanation/Hint
### Sample Explanation 1
Consider the first test case.
$ A=(1,2,3,4,5) $ is non-decreasing and satisfies $ \displaystyle \sum_{i=1}^{N-1} (A_{i+1} \bmod A_i) = (2\bmod 1) + (3\bmod 2) + (4\bmod 3) + (5\bmod 4)=3=K $ , so it satisfies all conditions.
There does not exist an $ A $ that satisfies all conditions and has a value of $ A_N $ less than $ 5 $ , so printing $ A=(1,2,3,4,5) $ will be accepted.
Other than this, printing $ A=(2,3,4,5,5) $ or $ A=(2,3,3,5,5) $ will also be accepted.
### Constraints
- $ 1\le T \le 10^5 $
- $ 2\le N \le 2\times 10^5 $
- The sum of $ N $ over all test cases is at most $ 2\times 10^5 $ .
- $ 1\le K\le 10^9 $
- All input values are integers.