AT_arc209_c [ARC209C] Adjusting a Rectangle

Description

You are given positive integers $ N, X $ and integer sequences of length $ N $ : $ S = (S_1, S_2, \dots, S_N), P = (P_1, P_2, \dots, P_N) $ . Here, each element of $ P $ is $ 1 $ or $ -1 $ . You are given $ Q $ queries. In each query, you are given integers $ l, r $ satisfying $ 1 \leq l \leq r \leq N $ , and you play the following game: - Initially, your score is $ 0 $ , and integers $ a, b $ are initialized as $ a = 1, b = 1 $ . - For $ i = l, l+1, \dots, r $ in this order, perform the following operation: - If $ i $ is even, replace the value of $ a $ with any integer between $ 1 $ and $ X $ (inclusive); if $ i $ is odd, replace the value of $ b $ with any integer between $ 1 $ and $ X $ (inclusive). - After that, if $ ab \geq S_i $ , add $ P_i $ to your score. Otherwise, the score does not change. Note that $ P_i $ can be negative. For each query, find the maximum possible value of your score when the game ends.

Input Format

The input is given from Standard Input in the following format: > $ N $ $ X $ $ Q $ $ S_1 $ $ S_2 $ $ \ldots $ $ S_N $ $ P_1 $ $ P_2 $ $ \ldots $ $ P_N $ $ \text{query}_1 $ $ \text{query}_2 $ $ \vdots $ $ \text{query}_Q $ Each query is given in the following format: > $ l $ $ r $

Output Format

Output $ Q $ lines. The $ i $ -th line should contain the maximum possible value of your score when the game ends in the $ i $ -th query.

Explanation/Hint

### Sample Explanation 1 In the first query, you can make the score $ 2 $ when the game ends by the following procedure: $ i $ Operation $ a $ $ b $ Score- $ 1 $ $ 1 $ $ 0 $ $ 5 $ Replace the value of $ b $ with $ 4 $ . Since $ ab < S_5 \, (= 5) $ , the score does not change. $ 1 $ $ 4 $ $ 0 $ $ 6 $ Replace the value of $ a $ with $ 2 $ . Since $ ab \geq S_6 \, (= 7) $ , add $ P_6 \, (= 1) $ to the score. $ 2 $ $ 4 $ $ 1 $ $ 7 $ Replace the value of $ b $ with $ 3 $ . Since $ ab \geq S_7 \, (= 3) $ , add $ P_7 \, (= -1) $ to the score. $ 2 $ $ 3 $ $ 0 $ $ 8 $ Replace the value of $ a $ with $ 4 $ . Since $ ab \geq S_8 \, (= 9) $ , add $ P_8 \, (= 1) $ to the score. $ 4 $ $ 3 $ $ 1 $ $ 9 $ Replace the value of $ b $ with $ 4 $ . Since $ ab \geq S_9 \, (= 16) $ , add $ P_9 \, (= 1) $ to the score. $ 4 $ $ 4 $ $ 2 $ It is impossible to make the score $ 3 $ or more when the game ends, so output $ 2 $ . ### Constraints - $ 1 \le N, X, Q \le 10^5 $ - $ 1 \le S_i \le 10^5 $ - $ P_i = 1 $ or $ P_i = -1 $ . - For each query, $ 1 \le l \le r \le N $ . - All input values are integers.