AT_arc213_b [ARC213B] Hamming Distance is not 1
Description
You are given non-negative integers $ q,L,R\;(q \in \{ 0,1\}, \; L \leq R) $ . Consider a set $ S $ that satisfies all of the following conditions.
- $ S $ consists of distinct integers between $ L $ and $ R $ , inclusive.
- If $ a \in S, \; b \in S, \; a \neq b $ , then $ a $ and $ b $ differ in at least two digits in binary representation. More formally, there exist at least two non-negative integers $ i $ such that $ \left\lfloor\frac{a}{2^i}\right\rfloor $ and $ \left\lfloor\frac{b}{2^i}\right\rfloor $ have different parities.
- Among those satisfying the above two conditions, the number of elements is maximum.
If $ q=0 $ , find the number of elements in such a set $ S $ .
If $ q=1 $ , construct one such set $ S $ .
For each input file, solve $ T $ test cases.
Input Format
The input is given from Standard Input in the following format:
> $ T $ $ case_1 $ $ case_2 $ $ \vdots $ $ case_T $
Each case is given in the following format:
> $ q $ $ L $ $ R $
Output Format
Output the answers in a total of $ T $ lines.
The $ t $ -th line should contain the answer for the $ t $ -th test case.
For each test case, if $ q=0 $ , print the number of elements in a set $ S $ that satisfies the conditions.
If $ q=1 $ , for a set $ S $ that satisfies the conditions, let
$ B_i=\begin{cases} 1 \; (S \text{ contains } i) \\ 0 \; (S \text{ does not contain } i) \end{cases} $
and output it in the following format:
> $ B_L $ $ B_{L+1} $ $ \dots $ $ B_R $
If there are multiple sets $ S $ that satisfy the conditions, you may print any of them.
Explanation/Hint
### Sample Explanation 1
In the first test case, $ S=\{0,3\} $ satisfies the conditions. $ S=\{1,2\} $ also satisfies the conditions, so it is correct as well.
In the second test case, the only $ S $ that satisfies the conditions is $ \{1,2\} $ , whose number of elements is $ 2 $ .
### Constraints
- $ 1 \leq T \leq 2 \times 10^5 $
- $ 0 \leq q \leq 1 $
- $ 0 \leq L \leq R \leq 10^{18} $
- The sum of $ q(R-L) $ over all test cases is at most $ 5\times 10^6 $ .
- All input values are integers.