AT_fps_24_b 整数の組
Description
You are given an integer $ N $ .
Find the number of non-negative integer quadruples $ (a, b, c, d) $ that satisfy all of the following conditions, and output the result modulo $ 998244353 $ :
- $ a + b + c + d = N $
- $ a $ is $ 0 $ or $ 1 $
- $ b $ is $ 0 $ , $ 1 $ , or $ 2 $
- $ c $ is even
- $ d $ is a multiple of $ 3 $
Input Format
The input is given from standard input in the following format:
> $ N $
Output Format
Print the answer.
Explanation/Hint
### Sample Explanation 1
The following $ 6 $ quadruples $ (a,b,c,d) $ satisfy the conditions:
- $ (0,0,2,3) $
- $ (0,1,4,0) $
- $ (0,2,0,3) $
- $ (1,0,4,0) $
- $ (1,1,0,3) $
- $ (1,2,2,0) $
### Constraints
- $ 0 \leq N \leq 10^9 $
- $ N $ is an integer