AT_fps_24_c 数列
Description
Among integer sequences of length $ N $ consisting of non-negative integers not greater than $ M $ , find the number of sequences whose total sum is exactly $ S $ .
Output the result modulo $ 998244353 $ .
Input Format
The input is given from standard input in the following format:
> $ N $ $ M $ $ S $
Output Format
Print the answer.
Explanation/Hint
### Sample Explanation 1
There are $ 6 $ sequences that satisfy the condition:
- $ (0,2,2) $
- $ (1,1,2) $
- $ (1,2,1) $
- $ (2,0,2) $
- $ (2,1,1) $
- $ (2,2,0) $
### Constraints
- $ 1 \leq N \leq 2 \times 10^5 $
- $ 1 \leq M \leq 2 \times 10^5 $
- $ 1 \leq S \leq 2 \times 10^5 $
- $ N, M, S $ are integers