AT_fps_24_c 数列

Description

Among integer sequences of length $ N $ consisting of non-negative integers not greater than $ M $ , find the number of sequences whose total sum is exactly $ S $ . Output the result modulo $ 998244353 $ .

Input Format

The input is given from standard input in the following format: > $ N $ $ M $ $ S $

Output Format

Print the answer.

Explanation/Hint

### Sample Explanation 1 There are $ 6 $ sequences that satisfy the condition: - $ (0,2,2) $ - $ (1,1,2) $ - $ (1,2,1) $ - $ (2,0,2) $ - $ (2,1,1) $ - $ (2,2,0) $ ### Constraints - $ 1 \leq N \leq 2 \times 10^5 $ - $ 1 \leq M \leq 2 \times 10^5 $ - $ 1 \leq S \leq 2 \times 10^5 $ - $ N, M, S $ are integers