AT_fps_24_d 数列 2
Description
Consider integer sequences $ A=(a_1,a_2,\dots,a_N) $ of length $ N $ , where each element is a non-negative integer not greater than $ M $ .
Count how many such sequences satisfy the following condition, and output the result modulo $ 998244353 $ .
- Let $ B=(b_1,b_2,\dots,b_N) $ be the sequence obtained by sorting $ A $ in ascending order.
For every $ i $ such that $ 1 \leq i \leq N-1 $ , the parity of $ b_i $ and $ b_{i+1} $ must be different.
Input Format
The input is given from standard input in the following format:
> $ N $ $ M $
Output Format
Print the answer.
Explanation/Hint
### Sample Explanation 1
There are $ 8 $ sequences that satisfy the condition:
- $ (0,1) $
- $ (0,3) $
- $ (1,0) $
- $ (1,2) $
- $ (2,1) $
- $ (2,3) $
- $ (3,0) $
- $ (3,2) $
### Constraints
- $ 1 \leq N \leq 2 \times 10^5 $
- $ 1 \leq M \leq 2 \times 10^5 $
- $ N, M $ are integers