AT_fps_24_h ジャンプ
Description
On a 2D coordinate plane, a piece is placed at $ (0, 0) $ .
You may perform the following operation any number of times (including zero):
- Choose an integer pair $ (a, b) $ such that $ 0 \leq a \leq 1 $ , $ 0 \leq b $ , and $ (a, b) \neq (0, 0) $ .
- If the current position of the piece is $ (x, y) $ , move it to $ (x+a, y+b) $ .
Find the number of operation sequences that result in the piece being at $ (N, M) $ after all operations, and output the answer modulo $ 998244353 $ .
Input Format
The input is given from standard input in the following format:
> $ N $ $ M $
Output Format
Print the answer.
Explanation/Hint
### Sample Explanation 1
For each valid operation sequence, the visited coordinates are as follows (5 possibilities):
- $ (0, 0) \to (0, 1) \to (1, 1) \to (2, 1) $
- $ (0, 0) \to (1, 0) \to (1, 1) \to (2, 1) $
- $ (0, 0) \to (1, 0) \to (2, 0) \to (2, 1) $
- $ (0, 0) \to (1, 0) \to (2, 1) $
- $ (0, 0) \to (1, 1) \to (2, 1) $
### Constraints
- $ 1 \leq N \leq 2 \times 10^5 $
- $ 1 \leq M \leq 2 \times 10^5 $
- All input values are integers