AT_fps_24_i スコア
Description
You are given $ N $ distinct integers $ A_1, A_2, \dots, A_N $ .
You will choose $ K $ of them. The **score** of a choice is defined as the product of the chosen integers.
There are $ \binom{N}{K} $ possible ways to choose $ K $ integers.
Find the sum of their scores, and output the result modulo $ 998244353 $ .
Input Format
The input is given from standard input in the following format:
> $ N $ $ K $ $ A_1 $ $ A_2 $ $ \dots $ $ A_N $
Output Format
Print the answer.
Explanation/Hint
### Sample Explanation 1
The possible ways to choose $ K $ integers and their scores are:
- Choose $ A_1 = 2 $ and $ A_2 = 3 $ . The score is $ 2 \times 3 = 6 $ .
- Choose $ A_1 = 2 $ and $ A_3 = 5 $ . The score is $ 2 \times 5 = 10 $ .
- Choose $ A_2 = 3 $ and $ A_3 = 5 $ . The score is $ 3 \times 5 = 15 $ .
### Constraints
- $ 1 \leq N \leq 2 \times 10^5 $
- $ 1 \leq K \leq N $
- $ 1 \leq A_i \leq 10^8 $
- If $ i \neq j $ , then $ A_i \neq A_j $
- All input values are integers