AT_fps_24_k 順列
Description
You are given an integer $ N $ .
Consider permutations $ p = (p_1, p_2, \dots, p_N) $ of $ (1, 2, \dots, N) $ .
Count how many such permutations satisfy the following condition, and output the result modulo $ 998244353 $ .
- For every integer $ i $ such that $ 1 \leq i \leq N-1 $ , it must hold that $ \max(p_1, p_2, \dots, p_i) \neq i $ .
Input Format
The input is given from standard input in the following format:
> $ N $
Output Format
Print the answer.
Explanation/Hint
### Sample Explanation 1
The following $ 3 $ permutations $ p $ satisfy the condition:
- $ (2,3,1) $
- $ (3,1,2) $
- $ (3,2,1) $
### Constraints
- $ 1 \leq N \leq 2.5 \times 10^5 $
- $ N $ is an integer