AT_icpc2013summer_warmingUp_g Moving Points
Description
[problemUrl]: https://atcoder.jp/contests/jag2013summer-warmingup/tasks/icpc2013summer_warmingUp_g
You are given $ N $ points in the $ xy $-plane. Each point is in a state of linear uniform motion.
Your task is to calculate the distance to the furthest point in Manhattan distance from the origin at time $ t $.
The first line of the input file contains the integers $ N $ and $ M $ ($ 1\ \leq\ N,\ M\ \leq\ 10^5 $), separated by a space.
The next $ N $ lines describe the points. Each contains four real numbers $ x $, $ y $, $ vx $ and $ vy $ ($ |x|,|y|,|vx|,|vy|\ \leq\ 10^6 $). This shows the initial coordinates $ (x,\ y) $ and velocity $ (vx,\ vy) $.
The next $ M $ lines describe the queries. Each line contains one real number $ t $ ($ 0\ \leq\ t\ \leq\ 10^6 $).
For each query, output the maximal Manhattan distance in one line.
The value which is accurate to within a relative or absolute value of 1E-9 will be accepted.
```
2 2
0 0 1 0
1 0 -1 0
0
1
```
```
1.0000000000
1.0000000000
```
```
3 3
0 0 1 1
0 1 1 0
3 3 -2 -1
0
1
2
```
```
6.0000000000
3.0000000000
4.0000000000
```
```
3 3
1 1 0.5 0
0 2 1.5 -1
1.5 0 0 1
0
1
2
```
```
2.0000000000
2.5000000000
3.5000000000
```
Input Format
N/A
Output Format
N/A