AT_joisc2011_ioi 国際情報オリンピック (IOI)

题目描述

有 $K$ 名 OIer 参加了 20XX 年的 IOI 比赛。本场比赛共有 $N$ 个问题,各选手每个问题的得分都是 $0$ 以上 $100$ 以下的整数。 在比赛结束后,会按照选手们在 $N$ 个问题上的总得分给选手们颁发奖牌。对于金牌的颁发,规定如下: 设 $G$ 为 $N$ 个问题的总分在 $G$ 分以上的选手人数在全体的 $\frac{1}{12}$ 以上的最大值。此时,拿到金牌的条件是 $N$ 个问题的总分在 $G$ 分以上。 选手们目前已经答完了 $M$ 个问题,分数已经确定。在 IOI 官网上看到各选手截至目前的总分的你想算算一定能拿到金牌的选手和可能拿到金牌的选手分别有多少。

输入格式

第一行输入三个以空格隔开的整数 $K,N,M$,分别表示选手人数,全部问题数,已答完问题数。 接下来 $K$ 行输入每名选手的得分。全部输入中的第 $i+1$ 行输入一行一个整数 $P_i$,表示第 $i$ 名选手的目前总分。($1\le i\le K$)

输出格式

令 $a$ 为一定能拿到金牌的选手人数,$b$ 为可能能拿到金牌的选手人数。 输出的前 $a$ 行,每行包含一个整数,表示一定能拿到金牌的选手编号。要求按升序输出。 接下来一行,输出 `--------`(八个连字符)。 最后 $b$ 行输出可能拿到金牌的选手编号,格式同前 $a$ 行,也要求按照升序输出。 ### 输入输出样例 #### 输入 #1 ``` 15 3 2 0 30 50 100 0 190 10 50 100 80 90 200 50 100 0 ``` #### 输出 #1 ``` 12 -------- 4 6 9 11 12 14 ``` #### 输入 #2 ``` 5 4 2 0 50 100 150 200 ``` #### 输出 #2 ``` -------- 1 2 3 4 5 ```

说明/提示

#### 数据规模与约定 对于 $20$ 分的测试点,保证 $K\le 3000$。 对于全部 $100$ 分的测试点,保证 $1\le K\le 10^5$,$1\le N\le 10^7$,$0\le M\le N$,$0\le P_i\le 100\times M$。