AT_masters2025_final_d Submit Your Test Cases

Description

Create four inputs that conform to the specification of Problem C, concatenate them in the format shown below, and submit them as a single text file. > $ X $ $ Y $ $ Z $ $ x_0 $ $ y_0 $ $ \vdots $ $ x_{X+Y+Z-1} $ $ y_{X+Y+Z-1} $ $ X $ $ Y $ $ Z $ $ x_0 $ $ y_0 $ $ \vdots $ $ x_{X+Y+Z-1} $ $ y_{X+Y+Z-1} $ $ X $ $ Y $ $ Z $ $ x_0 $ $ y_0 $ $ \vdots $ $ x_{X+Y+Z-1} $ $ y_{X+Y+Z-1} $ $ X $ $ Y $ $ Z $ $ x_0 $ $ y_0 $ $ \vdots $ $ x_{X+Y+Z-1} $ $ y_{X+Y+Z-1} $ Each input must satisfy all of the following constraints: - The numbers of each type of trash must be integers satisfying $ X = 100 $ , $ Y = 100 $ , and $ 1 \leq Z \leq 100 $ . - All trash coordinates $ (x_i, y_i) $ must be integers satisfying $ 1 \leq x_i, y_i \leq 10^6 - 1 $ . - The Euclidean distance between any two trash items must be at least $ 10^3 $ . - There must be at least one burnable trash item $ (x, y) $ in each of the following four regions: - $ x \leq 4 \times 10^5 $ and $ y \leq 4 \times 10^5 $ - $ x \leq 4 \times 10^5 $ and $ y \geq 6 \times 10^5 $ - $ x \geq 6 \times 10^5 $ and $ y \leq 4 \times 10^5 $ - $ x \geq 6 \times 10^5 $ and $ y \geq 6 \times 10^5 $ The four inputs you generate must all be distinct. If the submitted text file correctly contains four inputs that satisfy all of the above specifications, you will receive AC and earn 1 point.

Input Format

N/A

Output Format

N/A