AT_past18_g 二回の交換
Description
You are given length- $ N $ sequences $ A = (A_1, A_2, \ldots, A_N) $ and $ B = (B_1, B_2, \ldots, B_N) $ .
You will apply the following operation against the sequence $ A $ exactly twice.
- Choose an integer $ i $ with $ 1 \leq i < N $ , and swap the values of $ A_i $ and $ A_{i + 1} $ .
Determine if you can make $ A = B $ by operating exactly twice.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ A_1 $ $ A_2 $ $ \ldots $ $ A_N $ $ B_1 $ $ B_2 $ $ \ldots $ $ B_N $
Output Format
Print `Yes` if you can make $ A = B $ by operating exactly twice, and `No` otherwise.
Explanation/Hint
### Sample Explanation 1
You can make $ A = B $ by operating exactly twice as follows:
- Choose $ i = 1 $ . Swap the values of $ A_1 $ and $ A_2 $ to make $ A = (3, 1, 5, 5, 2) $ .
- Choose $ i = 4 $ . Swap the values of $ A_4 $ and $ A_5 $ to make $ A = (3, 1, 5, 2, 5) $ .
### Constraints
- $ 2 \leq N \leq 2 \times 10^5 $
- $ 1 \leq A_i, B_i \leq N $
- All input values are integers.