AT_past19_j 3 人組
Description
There are $ 3N $ people numbered from $ 1 $ to $ 3N $ . Person $ i $ has $ A_i $ yen (currency in Japan).
You are going to group the $ 3N $ people into $ N $ groups of three people each. Let $ S_i $ be the total amount of yen in the $ i $ -th group.
Find the minimum possible $ \displaystyle \max_{1 \leq k \leq N} S_k - \min_{1 \leq k \leq N}S_k $ .
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ A_1 $ $ A_2 $ $ \dots $ $ A_{3N} $
Output Format
Print the minimum possible $ \displaystyle \max_{1 \leq k \leq N} S_k - \min_{1 \leq k \leq N}S_k $ .
Explanation/Hint
### Sample Explanation 1
If you group person $ 1 $ , person $ 2 $ , and person $ 6 $ into group $ 1 $ , and person $ 3 $ , person $ 4 $ , and person $ 5 $ into group $ 2 $ , then
- $ S_1 = 1 + 3 + 9 = 13 $ ,
- $ S_2 = 4 + 6 + 2 = 12 $ ,
- $ \displaystyle \max_{1 \leq k \leq N} S_k - \min_{1 \leq k \leq N}S_k = 13 - 12 = 1 $ .
No grouping makes $ \displaystyle \max_{1 \leq k \leq N} S_k - \min_{1 \leq k \leq N}S_k $ less than $ 1 $ , so the answer is $ 1 $ .
### Constraints
- $ 2 \leq N \leq 5 $
- $ 0 \leq A_i \leq 10^8 $
- All input values are integers.