AT_past19_k 隣接禁止
Description
There is an $ N $ -vertex tree whose vertices are numbered $ 1 $ through $ N $ . The $ i $ -th edge connects vertex $ u_i $ and vertex $ v_i $ bidirectionally. Vertex $ i $ has an integer $ A_i $ written on it.
Determine if there is a way to choose $ K $ vertices among the $ N $ so that no pair of chosen vertices are adjacent. If there is, find the maximum sum of integers written on the chosen $ K $ vertices.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ K $ $ u_1 $ $ v_1 $ $ \vdots $ $ u_{N-1} $ $ v_{N-1} $ $ A_1 $ $ \ldots $ $ A_N $
Output Format
Print `-1` if there is no conforming choice. If there is, print the maximum sum of the integers written on chosen $ K $ vertices.
Explanation/Hint
### Sample Explanation 1
It is optimal to choose vertex $ 3 $ and vertex $ 5 $ .
### Sample Explanation 3
There is no conforming choice.
### Constraints
- $ 2\leq N\leq 100 $
- $ 1\leq K \leq N $
- $ 1\leq u_i,v_i\leq N $
- $ 1\leq A_i \leq 100 $
- The input graph is a tree.
- All input values are integers.