AT_past202107_h 折れ線グラフ
题目描述
高桥的老师给高桥留了课后画折线统计图的作业。画法如下:
1. 给定一个长为 $n$ 的数列 $a_1,a_2,...,a_n$,其中 $a_1=a_n=0$。
2. 对于任意一个 $i=1,2,...,n$,在二维平面坐标系中画出点 $P_i(i,a_i)$。
3. 对于任意一个 $i=1,2,...,n-1$,画一条连接点 $P_i$ 和点 $P_{i+1}$ 的线段。
想要快点完成作业的高桥计划偷偷修改 $a$ 数列使得所画的线段长度和最短。但他修改时仍需遵循以下原则:(记修改后的数列为 $b$)
- $b$ 数列完全由非负整数构成;
- $b_1=b_n=0$;
- $\displaystyle\sum_{i=1}^{n}a_i=\displaystyle\sum_{i=1}^{n}b_i$。
请你输出,他修改完数列之后,画的线段总长度的最小值。
输入格式
第一行为一个整数 $n$。
第二行为 $n$ 个整数,表示数列 $a$。
输出格式
一行一个实数,答案。
请保证你的答案与标答的差的绝对值不超过 $10^{-5}$。
说明/提示
#### 样例 #1 解释
$b$ 数列可为 ${0,1,2,0}$。
#### 数据规模与约定
对于全部测试点,数据保证:
- $2\le n\le 100$;
- $0\le a_i\le 100$;
- $a_1=a_n=0$;
- $\displaystyle\sum_{i=1}^{n}a_i\le 100$。