AT_past202107_h 折れ線グラフ

题目描述

高桥的老师给高桥留了课后画折线统计图的作业。画法如下: 1. 给定一个长为 $n$ 的数列 $a_1,a_2,...,a_n$,其中 $a_1=a_n=0$。 2. 对于任意一个 $i=1,2,...,n$,在二维平面坐标系中画出点 $P_i(i,a_i)$。 3. 对于任意一个 $i=1,2,...,n-1$,画一条连接点 $P_i$ 和点 $P_{i+1}$ 的线段。 想要快点完成作业的高桥计划偷偷修改 $a$ 数列使得所画的线段长度和最短。但他修改时仍需遵循以下原则:(记修改后的数列为 $b$) - $b$ 数列完全由非负整数构成; - $b_1=b_n=0$; - $\displaystyle\sum_{i=1}^{n}a_i=\displaystyle\sum_{i=1}^{n}b_i$。 请你输出,他修改完数列之后,画的线段总长度的最小值。

输入格式

第一行为一个整数 $n$。 第二行为 $n$ 个整数,表示数列 $a$。

输出格式

一行一个实数,答案。 请保证你的答案与标答的差的绝对值不超过 $10^{-5}$。

说明/提示

#### 样例 #1 解释 $b$ 数列可为 ${0,1,2,0}$。 #### 数据规模与约定 对于全部测试点,数据保证: - $2\le n\le 100$; - $0\le a_i\le 100$; - $a_1=a_n=0$; - $\displaystyle\sum_{i=1}^{n}a_i\le 100$。