AT_past202212_c 三つ組の積

Description

You are given an integer sequence of length $ N $ : $ A = (A_1, \dots, A_N) $ . Find the number of integers $ X $ that satisfy the following condition. - There are integers $ i $ , $ j $ , and $ k $ such that $ A_i \times A_j \times A_k = X $ and $ 1 \leq i \lt j \lt k \leq N $ .

Input Format

The input is given from Standard Input in the following format: > $ N $ $ A_1 $ $ \ldots $ $ A_N $

Output Format

Print the answer.

Explanation/Hint

### Sample Explanation 1 $ X = 4 $ , $ 6 $ , and $ 12 $ satisfy the condition. ### Constraints - $ 3 \leq N \leq 100 $ - $ 1 \leq A_i \leq 100 \, (1 \leq i \leq N) $ - All values in the input are integers.