AT_past202212_c 三つ組の積
Description
You are given an integer sequence of length $ N $ : $ A = (A_1, \dots, A_N) $ .
Find the number of integers $ X $ that satisfy the following condition.
- There are integers $ i $ , $ j $ , and $ k $ such that $ A_i \times A_j \times A_k = X $ and $ 1 \leq i \lt j \lt k \leq N $ .
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ A_1 $ $ \ldots $ $ A_N $
Output Format
Print the answer.
Explanation/Hint
### Sample Explanation 1
$ X = 4 $ , $ 6 $ , and $ 12 $ satisfy the condition.
### Constraints
- $ 3 \leq N \leq 100 $
- $ 1 \leq A_i \leq 100 \, (1 \leq i \leq N) $
- All values in the input are integers.