AT_past202212_m 木と区間
Description
There is a tree with $ N $ vertices, whose vertices are numbered $ 1, \dots, N $ and edges are numbered $ 1, \dots, N-1 $ . Edge $ i \, (1 \leq i \leq N - 1) $ connects vertices $ U_i $ and $ V_i $ .
Find the sum of the following value over all integer pairs $ (l, r) $ such that $ 1 \leq l \leq r \leq N - 1 $ :
- the number of vertices that are reachable from vertex $ 1 $ using zero or more edges numbered between $ l $ and $ r $ , inclusive.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ U_1 $ $ V_1 $ $ \vdots $ $ U_{N - 1} $ $ V_{N - 1} $
Output Format
Print the answer.
Explanation/Hint
### Sample Explanation 1
For example, if $ (l, r) = (2, 4) $ , one can get from vertex $ 1 $ to vertices $ 1 $ , $ 2 $ , and $ 4 $ ; if $ (l, r) = (3, 3) $ , one can get from vertex $ 1 $ to just vertex $ 1 $ .
### Constraints
- $ 2 \leq N \leq 2 \times 10^5 $
- $ 1 \leq U_i \lt V_i \leq N \, (1 \leq i \leq N - 1) $
- The given graph is a tree.
- All values in the input are integers.