AT_past202303_c 逆順列
Description
You are given a sequence $ P = (P_1, P_2, \ldots, P_N) $ that is a permutation of a length- $ N $ sequence $ (1, 2, 3, \ldots, N) $ .
For each $ K = 1, 2, \ldots, N $ , find the integer $ X_K $ such that $ K $ is the $ X_K $ -th element of the sequence $ P $ .
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ P_1 $ $ P_2 $ $ \ldots $ $ P_N $
Output Format
Print the answers $ X_K $ for $ K = 1, 2, \ldots, N $ in the following format, separated by spaces.
> $ X_1 $ $ X_2 $ $ \ldots $ $ X_N $
Explanation/Hint
### Sample Explanation 1
- For $ K = 1 $ , $ 1 $ is the $ 4 $ -th element of the sequence $ P $ .
- For $ K = 2 $ , $ 2 $ is the $ 2 $ -nd element of the sequence $ P $ .
- For $ K = 3 $ , $ 3 $ is the $ 5 $ -th element of the sequence $ P $ .
- For $ K = 4 $ , $ 4 $ is the $ 3 $ -rd element of the sequence $ P $ .
- For $ K = 5 $ , $ 5 $ is the $ 1 $ -st element of the sequence $ P $ .
### Constraints
- $ 1 \leq N \leq 100 $
- $ 1 \leq P_i \leq N $
- $ i \neq j \implies P_i \neq P_j $
- All values in the input are integers.