AT_past202303_f 集合の問題
Description
Given a set of $ N $ integers, $ S=\{S_1,S_2,\dots,S_N\} $ , answer $ Q $ queries in the following format:
- given a set of $ M $ integers, $ T=\{T_1,T_2,\dots,T_M\} $ , find how many integers the union of $ S $ and $ T $ contains.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ S_1 $ $ S_2 $ $ \dots $ $ S_N $ $ Q $ $ \rm{Query}_{1} $ $ \rm{Query}_{2} $ $ \vdots $ $ \rm{Query}_{Q} $
Here, $ \rm{Query}_{i} $ denotes the $ i $ -th query. Each query is given in the following format:
> $ M $ $ T_1 $ $ T_2 $ $ \dots $ $ T_M $
Output Format
Print $ Q $ lines.
The $ i $ -th line should contain the answer to the $ i $ -th query as an integer.
Explanation/Hint
### Sample Explanation 1
In this input, $ S=\{2,3,5,7,11\} $ , and five queries are given.
- In the first query, $ T=\{1,3,5,7,9,11\} $ . The union of $ S $ and $ T $ is $ \{1,2,3,5,7,9,11\} $ , which contains seven integers.
- In the second query, $ T=\{12,10,8,6,4,2\} $ . The union of $ S $ and $ T $ is $ \{2,3,4,5,6,7,8,10,11,12\} $ , which contains ten integers.
### Constraints
- All values in the input are integers.
- $ 1 \le N \le 2 \times 10^5 $
- $ 1 \le S_i \le 10^9 $
- If $ i \neq j $ , then $ S_i \neq S_j $ .
- All queries satisfy the following conditions:
- $ 1 \le M $
- If $ i \neq j $ , then $ T_i \neq T_j $ .
- The sum of $ M $ in an input does not exceed $ 2 \times 10^5 $ .