AT_past202306_f 番号付け
Description
Given a sequence $ A $ of length $ N $ , find a sequence $ B $ that satisfies all of the following conditions.
We can prove that this sequence $ B $ is unique.
- $ B $ is a sequence obtained by rearranging $ (1,2,...,N) $ .
- For all integer pairs $ (i,j)(i \neq j) $ , the following conditions are satisfied:
- if $ A_i
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ A_1 $ $ A_2 $ $ \dots $ $ A_N $
Output Format
Print the answer in the following format.
> $ B_1 $ $ B_2 $ $ \dots $ $ B_N $
Explanation/Hint
### Sample Explanation 1
When the sequence $ A=(2,3,4,4,4,4,3,3,2,1) $ , the sequence $ B=(2,4,7,8,9,10,5,6,3,1) $ .
### Constraints
- All values in the input are integers.
- $ 1 \le N \le 3 \times 10^5 $
- $ 1 \le A_i \le 10^9 $