AT_past202306_g N-SAT
Description
Determine if there is a way to assign $ 0 $ or $ 1 $ to each of $ N $ variables $ x_1,x_2,\ldots,x_N $ so that:
- for all $ i=1,2,\ldots,M $ ,
- there exists an integer $ j (1 \leq j \leq k_i) $ such that $ x_{a_{i,j}}=b_{i,j} $ .
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ M $ $ k_1 $ $ a_{1,1} $ $ b_{1,1} $ $ \vdots $ $ a_{1,k_1} $ $ b_{1,k_1} $ $ \vdots $ $ k_M $ $ a_{M,1} $ $ b_{M,1} $ $ \vdots $ $ a_{M,k_M} $ $ b_{M,k_M} $
Output Format
Print `Yes` if there is a way to assign values, and `No` otherwise.
Explanation/Hint
### Sample Explanation 1
For example, assigning $ x_1=1, x_2=0,x_3=0,x_4=0 $ , and $ x_5=0 $ satisfies the condition.
### Constraints
- $ 1 \leq N \leq 15 $
- $ 1 \leq M \leq 100 $
- $ 1 \leq k_i \leq N $
- $ 1 \leq a_{i,1} \lt a_{i,2} \lt \ldots \lt a_{i,k_i} \leq N $
- $ b_{i,j} \in \{0,1 \} $
- All values in the input are integers.