AT_past20_k 良いグリッド
Description
Consider a $ 4\times 4 $ grid with a number written on each cell. Let $ (i,j) $ be the cell in the $ i $ -th row from the top and $ j $ -th column from the left, and $ a_{i,j} $ be the number written on it. We say this grid is **good** if both of the following conditions are met:
- The numbers written on each row increase strictly monotonically from left to right. That is, $ a_{i,j} < a_{i,j+1} $ for all $ i,j\ (1\leq i\leq N, 1\leq j< N) $ .
- The numbers written on each column increase strictly monotonically from top to bottom. That is, $ a_{i,j} < a_{i+1,j} $ for all $ i,j\ (1\leq i< N, 1\leq j\leq N) $ .
You are given an integer $ A_{i,j} $ for each $ 1\leq i,j\leq 4 $ . Find the number, modulo $ 998244353 $ , of good grids such that:
- an integer between $ 1 $ and $ M $ , inclusive, is written on each cell, and
- for $ 1\leq i,j\leq 4 $ , if $ A_{i,j}\neq -1 $ , then $ A_{i,j} $ is written on cell $ (i,j) $ .
Input Format
The input is given from Standard Input in the following format:
> $ M $ $ A_{1,1} $ $ A_{1,2} $ $ A_{1,3} $ $ A_{1,4} $ $ A_{2,1} $ $ A_{2,2} $ $ A_{2,3} $ $ A_{2,4} $ $ A_{3,1} $ $ A_{3,2} $ $ A_{3,3} $ $ A_{3,4} $ $ A_{4,1} $ $ A_{4,2} $ $ A_{4,3} $ $ A_{4,4} $
Output Format
Print the number, modulo $ 998244353 $ , of good grids that satisfy the conditions.
Explanation/Hint
### Sample Explanation 1
Two grids satisfy the conditions:
```
1 2 3 4
2 3 4 5
3 4 5 7
4 5 8 9
```
```
1 2 3 4
2 3 4 5
3 4 6 7
4 5 8 9
```
### Sample Explanation 3
Be sure to find the count modulo $ 998244353 $ .
### Constraints
- $ 1\leq M \leq 30 $
- $ A_{i,j}=-1 $ or $ 1\leq A_{i,j}\leq M $ .
- All input values are integers.