AT_ttpc2024_1_b Self Checkout

Description

You are given a sequence $ S $ of length $ N $ , consisting of integers $ 1 $ , $ 2 $ , and $ 3 $ . Determine the number of sequences $ A $ consisting of integers $ 1 $ and $ 2 $ such that the sequence $ T $ obtained after performing the following procedure matches $ S $ . Output the answer modulo $ 998244353 $ . It can be proven that the number of such sequences $ A $ is finite. > Start with an empty sequence $ T $ . Given a sequence $ A $ consisting of integers $ 1 $ and $ 2 $ , perform the following process to obtain the sequence $ T $ : > > 1. Set a variable $ C = 0 $ . > 2. If $ A $ contains at least one $ 1 $ , remove the first occurrence of $ 1 $ from $ A $ and add $ 1 $ to $ C $ . > 3. If $ A $ is not empty, remove the first element $ x $ of $ A $ and add $ x $ to $ C $ . > 4. Append $ C $ to the end of $ T $ . > 5. If $ A $ is empty, terminate the process. Otherwise, return to step 1.

Input Format

The input is given from Standard Input in the following format: > $ N $ $ S_1 $ $ S_2 $ $ \dots $ $ S_N $

Output Format

Output the number of sequences $ A $ that satisfy the conditions, modulo $ 998244353 $ .

Explanation/Hint

### Sample Explanation 1 There are $ 5 $ possible sequences $ A $ that result in $ T = (3, 2) $ : $ A = (1, 2, 2), (2, 1, 2), (2, 2, 1), (2, 1, 1, 1), (1, 2, 1, 1) $ . For example, for $ A = (2, 1, 1, 1) $ , the process proceeds as follows: - Remove the first occurrence of $ 1 $ in $ A $ , which is $ A_2 = 1 $ . Now $ A = (2, 1, 1) $ and $ C = 1 $ . - Remove the first element of $ A $ , which is $ A_1 = 2 $ . Now $ A = (1, 1) $ and $ C = 3 $ . - Append $ C $ to the end of $ T $ . Now $ T = (3) $ . - Remove the first occurrence of $ 1 $ in $ A $ , which is $ A_1 = 1 $ . Now $ A = (1) $ and $ C = 1 $ . - Remove the first element of $ A $ , which is $ A_1 = 1 $ . Now $ A = () $ and $ C = 2 $ . - Append $ C $ to the end of $ T $ . Now $ T = (3, 2) $ . ### Sample Explanation 3 Note that there may be cases where no sequence $ A $ produces $ S $ , in which case the answer is $ 0 $ . ### Constraints - All input values are integers. - $ 1 \le N \le 10^6 $ - $ 1 \le S_i \le 3 $