AT_ttpc2024_1_h Two Convex Sets

Description

A set of points $ U $ in the $ xy $ -plane is called **good** if no point in $ U $ lies in the **interior** of the convex hull of $ U $ . Note that the empty set is considered good. You are given $ N $ distinct points $ v_1, v_2, \dots, v_N $ in the $ xy $ -plane. The coordinates of the point $ v_i $ are $ (x_i, y_i) $ . No three distinct points are collinear. Count the number of subsets $ S $ of $ V = \lbrace v_1, v_2, \dots, v_N \rbrace $ such that both $ S $ and $ V \setminus S $ are good sets.

Input Format

The input is given in the following format: > $ N $ $ x_1 $ $ y_1 $ $ x_2 $ $ y_2 $ $ \vdots $ $ x_N $ $ y_N $

Output Format

Output the answer.

Explanation/Hint

### Sample Explanation 1 Except for $ \emptyset $ and $ V $ , all other sets $ S $ satisfy the condition. ### Constraints - All input values are integers. - $ 1 \le N \le 40 $ - $ |x_i|,|y_i|\le 10^6 $ - $ (x_i,y_i)\neq (x_j,y_j)\ (i\neq j) $ - No three distinct points are collinear.