AT_ttpc2024_1_h Two Convex Sets
Description
A set of points $ U $ in the $ xy $ -plane is called **good** if no point in $ U $ lies in the **interior** of the convex hull of $ U $ . Note that the empty set is considered good.
You are given $ N $ distinct points $ v_1, v_2, \dots, v_N $ in the $ xy $ -plane. The coordinates of the point $ v_i $ are $ (x_i, y_i) $ . No three distinct points are collinear.
Count the number of subsets $ S $ of $ V = \lbrace v_1, v_2, \dots, v_N \rbrace $ such that both $ S $ and $ V \setminus S $ are good sets.
Input Format
The input is given in the following format:
> $ N $ $ x_1 $ $ y_1 $ $ x_2 $ $ y_2 $ $ \vdots $ $ x_N $ $ y_N $
Output Format
Output the answer.
Explanation/Hint
### Sample Explanation 1
Except for $ \emptyset $ and $ V $ , all other sets $ S $ satisfy the condition.
### Constraints
- All input values are integers.
- $ 1 \le N \le 40 $
- $ |x_i|,|y_i|\le 10^6 $
- $ (x_i,y_i)\neq (x_j,y_j)\ (i\neq j) $
- No three distinct points are collinear.