AT_ttpc2024_2_o Marunomi for All Prefixes
Description
Shobon proposed the following problem:
> #### Marunomi
>
> You are given a sequence of positive integers $ W = (w_1, w_2, \dots, w_N) $ .
>
> There are $ N $ living slimes, named Slime $ 1, 2, \dots, N $ .
> Initially, the weight of Slime $ i $ ( $ 1 \leq i \leq N $ ) is $ w_i $ , and its number of victories is $ 0 $ .
>
> You can perform the following operation on the slimes zero or more times:
>
> - Choose two living slimes, say Slime $ i $ and Slime $ j $ ( $ i \neq j $ ).
> - Let the current weight of Slime $ i $ be $ W_i $ and that of Slime $ j $ be $ W_j $ .
> - If $ W_i \gt W_j $ , the number of victories of Slime $ i $ increases by $ 1 $ , its weight becomes $ W_i + W_j $ , and Slime $ j $ dies.
> - If this condition is not satisfied, nothing happens.
>
> 
>
> For each $ i = 1, 2, \dots, N $ , let $ S_i $ be the maximum number of victories Slime $ i $ can achieve through your actions.
> Calculate the value of $ S_1 + S_2 + \dots + S_N $ .
However, since this problem is similar to [ARC189 D - Takahashi is Slime](https://atcoder.jp/contests/arc189/tasks/arc189_d), noya2 modified it as follows:
> #### Marunomi for All Prefixes
>
> You are given a sequence of positive integers $ A = (a_1, a_2, \dots, a_M) $ .
>
> For each $ i = 1, 2, \dots, M $ , compute the answer to the Marunomi problem when $ W = (a_1, a_2, \dots, a_i) $ .
Solve this problem.
Input Format
The input is given in the following format:
> $ M $ $ a_1 $ $ a_2 $ $ \cdots $ $ a_M $
Output Format
Output $ M $ lines. The $ i $ -th line ( $ 1 \leq i \leq M $ ) should contain the answer to the Marunomi problem for $ W = (a_1, a_2, \dots, a_i) $ .
Explanation/Hint
### Constraints
- All input values are integers.
- $ 1 \leq M \leq 2 \times 10^5 $
- $ 1 \leq a_i \leq 10^9\ (1 \leq i \leq M) $