AT_tupc2022_c Flip Grid
题目描述
有一个由 $H$ 行 $W$ 列组成的网格,每个格子的颜色都是白色或黑色。我们将第 $i$ 行第 $j$ 列的格子称为格子 $(i,j)$。
有 $N$ 个黑色格子,第 $i$ 个黑色格子位于 $(x_i, y_i)$。其余 $HW-N$ 个格子都是白色。
你可以对网格进行如下操作:
- 选择正整数对 $(a,b)$,其中 $1 \leq a \leq H, 1 \leq b \leq W$,然后将所有满足 $1 \leq i \leq a$ 且 $1 \leq j \leq b$ 的格子 $(i,j)$ 的颜色反转(如果为白则变为黑,如果为黑则变为白)。
请你求出将所有的 $HW$ 个格子都变为白色所需操作的最小次数。
输入格式
输入按照以下格式从标准输入读入。
> $H$ $W$ $N$
> $x_1$ $y_1$
> $\vdots$
> $x_N$ $y_N$
输出格式
请输出一个整数,表示所需操作的最小次数。
说明/提示
### 样例解释 1
初始状态下,只有格子 $(1,2)$ 和 $(2,1)$ 是黑色,其余为白色。
首先,以 $(a,b) = (2,1)$ 进行操作,这样 $(1,1)$ 的格子会由白变黑,$(2,1)$ 的格子会由黑变白。
然后,以 $(a,b) = (1,2)$ 进行操作,这样 $(1,1)$ 和 $(1,2)$ 的格子会由黑变白。
这样,经过 $2$ 次操作,$4$ 个格子全部变为白色。
### 数据范围
- $1 \leq H,W \leq 2 \times 10^5$
- $1 \leq N \leq \min(2 \times 10^5, H \times W)$
- $1 \leq x_i \leq H$
- $1 \leq y_i \leq W$
- $(x_i, y_i) \neq (x_j, y_j)$($i \neq j$)
- 所有输入均为整数。
由 ChatGPT 5 翻译