B3677 [语言月赛202211] Fear
题目描述
在平行宇宙的第五人格,游戏内有一个隐藏的数值,叫做**恐慌值**。
这个数值存在于**求生者**上,会随**监管者**追逐**求生者**的时间增长而变化。
具体的,在求生者未被监管者追逐前,求生者的**初始量**为 $y _ 0$。求生者被监管者追逐了 $t$ 秒。
第 $1$ 秒时,求生者的**恐慌值**为**初始量** $y _ 0$。接下来的每一秒,其**恐慌值**会被乘上它的**初始量**。
**特别的,如果 $t$ 为 $0$,那么求生者的恐慌值为 $1$。**
如果对于恐慌值的计算方式有疑惑,可以查看**样例解释 #1**帮助理解。
你需要计算,在追逐 $t$ 秒后,求生者的**恐慌值**的**奇偶性**以及**正负性**。
输入格式
输入一行两个整数,使用空格隔开。
第一个整数为 $y _ 0$,代表**初始量**。
第二个整数为 $t$,代表追逐时间。
输出格式
输出两行,每行为一个字符串,`NO` 或 `YES`。
第一行,如果恐慌值为负数,输出 `YES`,否则输出 `NO`。
第二行,如果恐慌值为奇数,输出 `YES`,否则输出 `NO`。
说明/提示
**【样例 #1 解释】**
求生者的恐慌值和追逐秒数对应如下:
| 秒数 | 恐慌值 |
| :-: | :-: |
| $1$ | $3$ |
| $2$ | $9$ |
| $3$ | $27$ |
在 $3$ 秒追逐后,求生者恐慌值为 $27$,是正数、奇数。
**【样例 #2 解释】**
在 $1$ 秒追逐结束后,求生者恐慌值为 $-2$,是负数、偶数。
**【样例 #3 解释】**
请注意 $0$ 是偶数。
**【数据规模与约定】**
对于前 $10\%$ 的数据,$1 \leq y _ 0 \leq 100$,$t = 1$。
对于前 $20\%$ 的数据,$1 \leq y _ 0 \leq 100$,$1 \leq t \leq 3$。
对于前 $50\%$ 的数据,$0 \leq y _ 0 \leq 10 ^ 9$,$0 \leq t \leq 10 ^ 3$。
对于前 $80\%$ 的数据,$-10 ^ 9 \leq y _ 0 \leq 10 ^ 9$,$0 \leq t \leq 10 ^ 9$。
对于 $100\%$ 的数据,$-10 ^ {18} \leq y _ 0 \leq 10 ^ {18}$,$ 0 \leq t \leq 10 ^ {18}$。
数据保证 $y _ 0, t$ 不同时为 $0$。